jdk1.5和jdk1.6的多线程api有些不同,这里主要针对jdk1.5的多线程api的AbstractQueuedSynchronizer进行说明。jdk api中很多锁内部都实现并且使用了AbstractQueuedSynchronizer实现。
AbstractQueuedSynchronizer实际上就是一个FIFO有状态双向队列。它声明了private volatile int state即AbstractQueuedSynchronizer的状态域,state属性用来表示这个同步器被请求了多少次(每请求一次state值加1)。它的结点用来保存在该AbstractQueuedSynchronizer上请求的线程,请求的模式(共享模式还是互斥模式),和线程的状态(等待唤醒,处于condition的等待队列中,已被取消(中断)) 以下是AbstractQueuedSynchronizer结点的内部实现:
static final class Node {
/** waitStatus value to indicate thread has cancelled */
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking */
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition */
static final int CONDITION = -2;
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null;
/**
* Status field, taking on only the values:
* SIGNAL: The successor of this node is (or will soon be)
* blocked (via park), so the current node must
* unpark its successor when it releases or
* cancels. To avoid races, acquire methods must
* first indicate they need a signal,
* then retry the atomic acquire, and then,
* on failure, block.
* CANCELLED: This node is cancelled due to timeout or interrupt.
* Nodes never leave this state. In particular,
* a thread with cancelled node never again blocks.
* CONDITION: This node is currently on a condition queue.
* It will not be used as a sync queue node until
* transferred. (Use of this value here
* has nothing to do with the other uses
* of the field, but simplifies mechanics.)
* 0: None of the above
*
* The values are arranged numerically to simplify use.
* Non-negative values mean that a node doesn't need to
* signal. So, most code doesn't need to check for particular
* values, just for sign.
*
* The field is initialized to 0 for normal sync nodes, and
* CONDITION for condition nodes. It is modified only using
* CAS.
*/
volatile int waitStatus;
/**
* Link to predecessor node that current node/thread relies on
* for checking waitStatus. Assigned during enqueing, and nulled
* out (for sake of GC) only upon dequeuing. Also, upon
* cancellation of a predecessor, we short-circuit while
* finding a non-cancelled one, which will always exist
* because the head node is never cancelled: A node becomes
* head only as a result of successful acquire. A
* cancelled thread never succeeds in acquiring, and a thread only
* cancels itself, not any other node.
*/
volatile Node prev;
/**
* Link to the successor node that the current node/thread
* unparks upon release. Assigned once during enqueuing, and
* nulled out (for sake of GC) when no longer needed. Upon
* cancellation, we cannot adjust this field, but can notice
* status and bypass the node if cancelled. The enq operation
* does not assign next field of a predecessor until after
* attachment, so seeing a null next field does not
* necessarily mean that node is at end of queue. However, if
* a next field appears to be null, we can scan prev's from
* the tail to double-check.
*/
volatile Node next;
/**
* The thread that enqueued this node. Initialized on
* construction and nulled out after use.
*/
volatile Thread thread;
/**
* Link to next node waiting on condition, or the special
* value SHARED. Because condition queues are accessed only
* when holding in exclusive mode, we just need a simple
* linked queue to hold nodes while they are waiting on
* conditions. They are then transferred to the queue to
* re-acquire. And because conditions can only be exclusive,
* we save a field by using special value to indicate shared
* mode.
*/
Node nextWaiter;
/**
* Returns true if node is waiting in shared mode
*/
final boolean isShared() {
return nextWaiter == SHARED;
}
/**
* Returns previous node, or throws NullPointerException if
* null. Use when predecessor cannot be null.
* @return the predecessor of this node
*/
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() { // Used to establish initial head or SHARED marker
}
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
以下将以Lock的lock方法为例(Lock接口的主要实现类为ReentrantLock),来看下java concurrent api是如何利用java语法而不是java语义来实现多线程FIFO同步的。ReentrantLock在内部实现了两个AbstractQueuedSynchronizer,即FairSync和NonfairSync,它们都实现了lock()方法。现以FairSync的lock实现为例。
1.在获取lock对象的锁时即调用lock对象的lock方法时,首先会调用该lock对象内部同步器e.g.FairSync的tryAcquire方法,试着获取一个锁。
2.如果{dy}步操作成功且当前线程是{dy}个获取到该锁的线程则把当前线程设置为该锁的所有者(owner),并设置同步器的状态(即锁请求的次数);如果不是{dy}个获取到该锁的线程则设置同步器的状态
3.如果{dy}步操作失败则先把当前线程插入到FIFO队列中(通过AbstractQueuedSynchronizer的addWaiter方法)。调用同步框架同步器基类AbstractQueuedSynchronizer的acquireQueued方法来顺序(FIFO)的获取该锁。具体的:
i.如果当前线程是FIFO队列的{dy}个结点({dy}个结点非头结点,该FIFO队列头结点为DUMMY结点,不是有效结点),则再次调用同步器实现类的tryAcquire方法来获取该锁。获取成功则设置整个FIFO队列的头结点,释放以前的头结点。
ii.如果当前线程不是FIFO队列的{dy}个结点,则调用同步框架同步器基类AbstractQueuedSynchronizer的shouldParkAfterFailedAcquire方法来判断是否当前线程应该被挂起(具体逻辑参看shouldParkAfterFailedAcquire方法,它是根据FIFO队列当前线程所处结点的前一个结点的状态来判断的。如果前一个结点的等待状态waitStatus<0则表示前一个结点所包含的线程还没有获取到锁,还在等待,那么当前线程就可以安心的等待了,该方法就返回true,表明当前线程应该park;如果前一个结点的等待状态waitStatus>0则表示前一个结点的状态为CANCELLED状态了,则把该结点之前的所有为CANCELLED状态的结点从FIFO队列中去除,该方法就返回false,表明当前线程不应该park,应该继续执行;如果前一个结点状态waitStatus=0则把它的状态设置为SIGNAL状态,即-1,该方法就返回false,表明当前线程不应该park,应该继续执行)
iii.根据第二步的结果如果当前线程需要park,则park当前线程;否则继续执行{dy}步。
步骤i,ii,iii这个循环使得当前线程所处的FIFO队列之前的所有结点都获取到了锁之后才能获取到锁,否则当前线程就被park。
具体的实现逻辑:
/**
* Acquires in exclusive uninterruptible mode for thread already in
* queue. Used by condition wait methods as well as acquire.
*
* @param node the node
* @param arg the acquire argument
* @return {@code true} if interrupted while waiting
*/
final boolean acquireQueued(final Node node, int arg) {
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} catch (RuntimeException ex) {
cancelAcquire(node);
throw ex;
}
}
java concurrent框架通过CAS和底层的LockSupport支持,通过java语法的方式而不是java语义的方式使java多线程同步,异步操作更加灵活。jdk实现提供了以AbstractQueuedSynchronizer为核心的多线程框架,我们可以更方便的使用java多线程了。
AbstractQueuedSynchronizer实际上就是一个FIFO有状态双向队列。它声明了private volatile int state即AbstractQueuedSynchronizer的状态域,state属性用来表示这个同步器被请求了多少次(每请求一次state值加1)。它的结点用来保存在该AbstractQueuedSynchronizer上请求的线程,请求的模式(共享模式还是互斥模式),和线程的状态(等待唤醒,处于condition的等待队列中,已被取消(中断)) 以下是AbstractQueuedSynchronizer结点的内部实现:
static final class Node {
/** waitStatus value to indicate thread has cancelled */
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking */
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition */
static final int CONDITION = -2;
/** Marker to indicate a node is waiting in shared mode */
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
static final Node EXCLUSIVE = null;
/**
* Status field, taking on only the values:
* SIGNAL: The successor of this node is (or will soon be)
* blocked (via park), so the current node must
* unpark its successor when it releases or
* cancels. To avoid races, acquire methods must
* first indicate they need a signal,
* then retry the atomic acquire, and then,
* on failure, block.
* CANCELLED: This node is cancelled due to timeout or interrupt.
* Nodes never leave this state. In particular,
* a thread with cancelled node never again blocks.
* CONDITION: This node is currently on a condition queue.
* It will not be used as a sync queue node until
* transferred. (Use of this value here
* has nothing to do with the other uses
* of the field, but simplifies mechanics.)
* 0: None of the above
*
* The values are arranged numerically to simplify use.
* Non-negative values mean that a node doesn't need to
* signal. So, most code doesn't need to check for particular
* values, just for sign.
*
* The field is initialized to 0 for normal sync nodes, and
* CONDITION for condition nodes. It is modified only using
* CAS.
*/
volatile int waitStatus;
/**
* Link to predecessor node that current node/thread relies on
* for checking waitStatus. Assigned during enqueing, and nulled
* out (for sake of GC) only upon dequeuing. Also, upon
* cancellation of a predecessor, we short-circuit while
* finding a non-cancelled one, which will always exist
* because the head node is never cancelled: A node becomes
* head only as a result of successful acquire. A
* cancelled thread never succeeds in acquiring, and a thread only
* cancels itself, not any other node.
*/
volatile Node prev;
/**
* Link to the successor node that the current node/thread
* unparks upon release. Assigned once during enqueuing, and
* nulled out (for sake of GC) when no longer needed. Upon
* cancellation, we cannot adjust this field, but can notice
* status and bypass the node if cancelled. The enq operation
* does not assign next field of a predecessor until after
* attachment, so seeing a null next field does not
* necessarily mean that node is at end of queue. However, if
* a next field appears to be null, we can scan prev's from
* the tail to double-check.
*/
volatile Node next;
/**
* The thread that enqueued this node. Initialized on
* construction and nulled out after use.
*/
volatile Thread thread;
/**
* Link to next node waiting on condition, or the special
* value SHARED. Because condition queues are accessed only
* when holding in exclusive mode, we just need a simple
* linked queue to hold nodes while they are waiting on
* conditions. They are then transferred to the queue to
* re-acquire. And because conditions can only be exclusive,
* we save a field by using special value to indicate shared
* mode.
*/
Node nextWaiter;
/**
* Returns true if node is waiting in shared mode
*/
final boolean isShared() {
return nextWaiter == SHARED;
}
/**
* Returns previous node, or throws NullPointerException if
* null. Use when predecessor cannot be null.
* @return the predecessor of this node
*/
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
}
Node() { // Used to establish initial head or SHARED marker
}
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
以下将以Lock的lock方法为例(Lock接口的主要实现类为ReentrantLock),来看下java concurrent api是如何利用java语法而不是java语义来实现多线程FIFO同步的。ReentrantLock在内部实现了两个AbstractQueuedSynchronizer,即FairSync和NonfairSync,它们都实现了lock()方法。现以FairSync的lock实现为例。
1.在获取lock对象的锁时即调用lock对象的lock方法时,首先会调用该lock对象内部同步器e.g.FairSync的tryAcquire方法,试着获取一个锁。
2.如果{dy}步操作成功且当前线程是{dy}个获取到该锁的线程则把当前线程设置为该锁的所有者(owner),并设置同步器的状态(即锁请求的次数);如果不是{dy}个获取到该锁的线程则设置同步器的状态
3.如果{dy}步操作失败则先把当前线程插入到FIFO队列中(通过AbstractQueuedSynchronizer的addWaiter方法)。调用同步框架同步器基类AbstractQueuedSynchronizer的acquireQueued方法来顺序(FIFO)的获取该锁。具体的:
i.如果当前线程是FIFO队列的{dy}个结点({dy}个结点非头结点,该FIFO队列头结点为DUMMY结点,不是有效结点),则再次调用同步器实现类的tryAcquire方法来获取该锁。获取成功则设置整个FIFO队列的头结点,释放以前的头结点。
ii.如果当前线程不是FIFO队列的{dy}个结点,则调用同步框架同步器基类AbstractQueuedSynchronizer的shouldParkAfterFailedAcquire方法来判断是否当前线程应该被挂起(具体逻辑参看shouldParkAfterFailedAcquire方法,它是根据FIFO队列当前线程所处结点的前一个结点的状态来判断的。如果前一个结点的等待状态waitStatus<0则表示前一个结点所包含的线程还没有获取到锁,还在等待,那么当前线程就可以安心的等待了,该方法就返回true,表明当前线程应该park;如果前一个结点的等待状态waitStatus>0则表示前一个结点的状态为CANCELLED状态了,则把该结点之前的所有为CANCELLED状态的结点从FIFO队列中去除,该方法就返回false,表明当前线程不应该park,应该继续执行;如果前一个结点状态waitStatus=0则把它的状态设置为SIGNAL状态,即-1,该方法就返回false,表明当前线程不应该park,应该继续执行)
iii.根据第二步的结果如果当前线程需要park,则park当前线程;否则继续执行{dy}步。
步骤i,ii,iii这个循环使得当前线程所处的FIFO队列之前的所有结点都获取到了锁之后才能获取到锁,否则当前线程就被park。
具体的实现逻辑:
/**
* Acquires in exclusive uninterruptible mode for thread already in
* queue. Used by condition wait methods as well as acquire.
*
* @param node the node
* @param arg the acquire argument
* @return {@code true} if interrupted while waiting
*/
final boolean acquireQueued(final Node node, int arg) {
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} catch (RuntimeException ex) {
cancelAcquire(node);
throw ex;
}
}
java concurrent框架通过CAS和底层的LockSupport支持,通过java语法的方式而不是java语义的方式使java多线程同步,异步操作更加灵活。jdk实现提供了以AbstractQueuedSynchronizer为核心的多线程框架,我们可以更方便的使用java多线程了。