本文旨在与读者分享Inventor Mold的设计思路。其特点是在一款三维设计软件中完成所有的设计,并且集成模流分享软件Mold Flow功能,满足塑料模具设计的整体解决方案。 随着塑料模具行业的快速发展、塑料模具制造精度的提高以及模具行业的激烈竞争,使得消费者对塑料模具设计的要求越来越高,必须同时考虑设计精度和设计周期的影响。目前,大部分塑料模具设计都是在三维软件中进行分模设计,在二维中进行排位的设计。这种方式,由于三维软件和二维软件分别独立,缺乏关联,存在着一些弊病,很容易出现设计的错误。另外三维与二维的“拼凑式”设计,也严重影响了塑料模具设计的精度。 下面以一个实例,来介绍Inventor Mold的设计流程。塑料产品如图1所示。该产品的特点是需要修补孔,要做抽芯机构。 1.新建模具设计 打开Inventor Mold后,新建一塑料模具设计,进入到Inventor Mold塑料模具设计的环境下,在未导入塑料产品之前,其中很多的指令都处于不可用状态,如图2所示。
2.导入塑胶产品 执行“塑料零件”指令,选择塑件产品,将塑件产品导入到塑料模具设计环境中,如图3所示。此时可看到菜单都已经被xx,如图4所示。
3.调整出模方向 此步骤是用来调整塑件产品的出模方向,当塑件导入模具设计环境后,会有一个默认的方向,但是默认的方向有可能不是正确的模具出模方向,所以必须进行调整。如图5所示,这里调整出模方向非常重要,因为Inventor Mold自动补孔(自动修补破孔)方式会根据出模的方向来定。
4.选择材料 材料库是Inventor Mold的一大特色,Inventor Mold基本上含有模具行业常用的材料,共有七千多种塑料材料,且每种材料都有其属性,包括厂商以及牌号,当然还包括收缩率。之所以Inventor Mold含有如此丰富的材料库,那是因为Inventor Mold中含有Mold Flow的功能,在进行模流分析时,必须先定义具体的材料,才可以进行工艺的设定和模流的分析。 需要特别注意的是,如果没有选定材料,后面的模流分析将不能进行,收缩率也将没有参考值,如图6所示。
5.设置收缩率 此命令是用来设置塑料材料的收缩率,当上一步骤中选择好材料后,便有了一个范围值,也可输入具体的数值,如图7 所示。
6.定义毛坯工件 此步骤是用来定义毛坯的大小,即模芯的大小。它的原理是根据塑件产品的{zd0}轮廓尺寸加上塑件{zd0}轮廓到毛坯边缘的距离值,自动计算得到一个尺寸,因此不用担心计算的尺寸会小于塑件产品的{zd0}轮廓值,如图8所示。
7.补孔 修补产品上的破孔,这是分模设计必须的、且工作量较大的工作。目前大部分的软件,都是通过创建曲面的方式去修补产品上的破孔。所以,只要软件能提供更多方便的创建曲面方法,则能轻松完成补孔的操作。这也是目前类似于Pro/ENGINEER和NX等软件的强项。 通常创建曲面方式的工具都必须一个曲面接着一个曲面去做,如果软件能够自动去创建曲面,这将大大提高分模的效率。在Inventor Mold中,一般都可以使用软件的自动补孔功能去补塑件产品的孔,对于在自动补孔操作中未能完成的,则可以通过其他方法进行。所以,补孔这一工作在Inventor Mold中可以分成两种方式来进行。以下是实际操作情况。 (1)自动补孔执行自动补孔命令后,软件会去识别塑件产品的孔并进行修补,但是并不是所有的孔都能正确识别和修补,需要后续手动更改、添加,如图9所示。
(2)添加需要修补的孔软件未识别的孔,需要在对话框中单击添加,选择塑件产品破孔的边界,依次选择边界即可,如图10所示。 经过以上步骤,若还没有将塑件产品的孔xx修补好,则必须通过Inventor软件的创建曲面工具来修补了,操作就类似于其他软件修补曲面的方法。 8.创建分型面 当塑件产品的破孔修补好后,接下来就是要创建出整个分型面。通常做法,先找到塑件产品的分型线,然后根据分型线去创建曲面,{zh1}合并成一张完整的曲面。 在Inventor Mold的分型设计中,有个“创建分型面”的工具,只要创建了工件(工件是软件判定分型面大小的依据),则能自动产生分型面,如图11所示。虽然自动创建分型面的功能不错,但是目前Inventor Mold并不能非常xx地创建分型面,必须进行一些更改,如删除、添加某边。而且也可能出现自动创建分型面不能完成的时候,此时还必须通过创建曲面的方法去创建分型面。
9.分型面检测 当分型面创建好后,最值得期待的就是将前后模分开了。但是在设计中,经常出现分不开的情况,也就是说分型面创建有问题。此时需要去查找分型面的错误。在Inventor Mold里提供了分型诊断的工具,可以检查其错误。如图12所示,软件能模拟分型面的拉开状态。 10.型芯/型腔 分型面创建好并且检测无误后,便可将毛坯进行分割。这里仅仅是一个分割的执行,软件可以自动判断分型面、补孔面,如果补孔不全,或者分型面创建有误,这里的执行将出现失败,结果如图13所示。 11.加载标准模架 如果一直是从事二维软件模架设计的人员,可能看到Inventor Mold设计流程的加载模架,会有些惊讶,这是Inventor Mold中的一大特色,它里面含有很多丰富的标准件库,如图14所示。
12.创建行位 Inventor Mold的行位设计,可以在分模前进行,也可以在分模后进行。通过采用单独创建行位的方法,结果如图15所示。 13.放置滑块 创建完镶件后,调用标准的滑块机构,在Inventor Mold中,滑块机构有个标准件库,如图16所示。将滑块机构与侧镶件连接在一起就组成了行位的抽芯机构,如图17所示。 14.浇注系统设计 在进行浇注系统设计之前,先进行浇口位置的分析。应用Inventor Mold集成的Mold Flow功能,分析结果采用云图的显示方式,同时,会有个流阻指示器,可查看塑件各个地方的阻力情况,如图18所示。
根据软件的分析结果,就可以设计浇注系统了,这包括浇注系统的主流道、分流道、冷料井和浇口等。在Inventor Mold 中提供浇注系统各部分的设计工具,结果如图19所示。同时,可加载浇注系统的标准件,如浇口套、定位环等,如图20所示。 15.顶出系统设计 放置顶针,通常是在二维排位设计的时候完成,这样不容易发现干涉问题,在Inventor Mold中可以利用其标准件库进行顶出系统的设计,如图21所示。 16.模流分析 Inventor Mold的另一个特色便是能进行模流分析,它集成的Mold Flow功能,现在能做注塑工艺的分析、填充分析和浇口位置分析。模具工艺分析,包括模具温度、熔体温度、注射压力、合模时间和注射时间。填充分析,包括有塑料流体、填充状况、质量预测、气穴和熔接痕等,如图22所示可以查看填充时间。 17.工程图样设计 当模具设计好后就必须进行工程图的设计了,这个步骤也就是出图工作。Inventor Mold在进行模具设计的时候,会自动管理各部分组件,因此其出图可达到自动的效果,执行命令后便列出了所有的组件,如图23所示。接下来就是不断完善图样,如添加尺寸和标准公差等。
18.小结 Inventor Mold基本上是采取自动的方式来提高设计的效率,从自动补孔、自动分型面、载入三维模架等步骤都可以看出。为了减少设计的错误,添加了很多标准件以满足在三维软件里完成所有设计,如顶针、滑块、浇口套等,特别是加入了工程师需要分析功能。 从流程上来看,这是符合塑料模具发展方向的。不过,毕竟它是刚刚起步,也存在一些不足之处,如创建曲面的方式少等。工程图出来后,在线型方面还是需要达到工程图的效果。 期待有更完善的工具来优化塑料模具设计。 本文来自。 |
||