余热发电

热式气体流量计用于水泥低温余热发电
  一、大管道气体流量计在低温余热发电项目中开始应用新型干法水泥工艺气流活跃在整个生产过程中,在窑系统中热风有一次风、二次风、三次风,还有冷却机形成的大量热风,在热风循环过程中一部分热风用于原料和煤粉的烘干,还有一部分气体则作为废气被排放在大气中。在2500t/d、5000t/d等规模的水泥生产线中为实现低温废气综合利用,将其用于余热发电和热力管网。低温余热发电主要利用在窑尾一级筒出口至排风机的管道抽出的废气,同时在冷却机抽出一定流量的废气,进入SP余热锅炉和AQC余热锅炉,余热锅炉出力,各自产生压力约1.25MPa,温度约250℃~300℃,流量约20t/h的主蒸汽汇总进入汽机,汽机发出的电能并入工厂中压电网。在北方地区低温余热也用于热力管网,实现取暖和供热。低温余热发电是xxxx支持项目,近几年低温余热发电在不断进步及成熟,并开始把此技术出口到泰国等国家。
  入口废气温度和流量是SP余热锅炉和AQC余热锅炉重要技术参数,在温度和流量的测定中,流量的测定有一定的难度,也日益迫切有待解决。难度在于新型干法水泥生产线中,热风管道的口径大多是大于500mm;另被测的气流是变化的,还带有一定的粉尘,所测的介质是包含气固二相。在流量测量规范中管道口径大于200mm就属于大口径流量测量,气固二相的流量测量又是特殊范畴;常用的气体测量传感器中一般带有小孔,热风中含有粉尘,很容易造成测量传感器的堵塞。如何选用低温余热发电大管道的流量测量仪表是本文讨论的重点。
  二。、大管道气体流量检测仪表当今我国倡导建设节能型经济,在此前提下,我所介绍的大管道气体流量检测仪表排除了压损大、运行费过高的节流装置,如传统的孔板式流量计,对大口径的管道它需要大的安装法兰,不仅笨重,还有较大压损,运行中磨损大,费用过高,ISO5167的新标准还要求前直管段达30~40D,现场很难满足,为此我们无法考虑采用这类仪表;也不推荐价格过高的气体超声流量计。在余热发电工控系统中,我建议采用取样原理、插入安装方式,通过测取管道中一点或多点的流速来推算流量的插入式流量计。这类仪表的特点是:结构简单、xxx较高、安装维护方便、重复性好,但准确度一般不高。较典型的是差压式均速管流量计和热式流量计,差压式均速管流量计是在上世纪60年代末问世的,它是基于伯努利能量守恒原则和皮托管测速原理发展起来的,所谓皮托管测速实际是测量管道中圆管直径上或矩形(菱形)管长与宽上几点的流速通过能量守恒原则推算出流量的一种插入式流量仪表,此圆管或菱形管通常也称检测杆,常用的是菱形,但其背压孔易堵塞,影响其正常工作,尽管可加装粉尘过滤装置,但由于水泥工艺的特殊情况,特别是大口径的管道选用时需要格外小心。热式流量计则是利用传热原理,以热电阻为敏感元件,当流速高时将带走更多的热量,降低了热电阻温度。在测量桥路上热电阻是作为桥路的一臂,由于温度变化引起阻值的变化,这将破坏桥路的平衡,为保持桥路的平衡,加在反馈电路上的功率必须变化,由它的变化能间接测定流量值。它{zd0}特点是可测量低于5m/s的流速,传热与流体质量有关,因此所测的流量为质量流量。从发展方向看如一旦能改进热式流量计的准确度,它将会有较大发展潜力,由于流量计的准确度对低温余热发电系统废气大管道的测量要求不是很高,主要是重复性指标,故更适宜热式流量计的推广和选用。
  三、一种典型的热式流量计美国KURZ仪表公司专业生产的热式流量计,包括450系列单点式测速热式流量计和K-BAR2000系列多点式测速热式流量计两种,其测速范围是0Nm/s~120Nm/s,工作温度{zg}可达+500℃,工作压力{zg}可达2MPa,重复性指标为0.25%,速度传感器响应时间为1秒,温度传感器响应时间为3秒,插入式安装,可适合于2.5寸以上管道。
  热式流量计的测量探头有两个传感器,一个是速度传感器,一个是温度传感器,两个传感器都是基准级铂电阻传感器。铂电阻固定在坚固、密封的不锈钢套管中,在测量电路中它们也作为测量桥路的两个臂,温度传感器在工作中测量被测气体的温度,它作为参比温度,而速度传感器被加热,并使其被加热的温度和参比温度有一固定的温差ΔT,当参比温度变化,则ΔT也随着变化,可以通过加热功率的变化来测量气体的质量流量。
  加热功率P,温差ΔT,质量流量qm之间的关系如下:
  P/ΔT=K1+K2(qmK3)其中K1,、K2、K3是与气体物性等有关的常数。ΔT一般控制在55℃恒定值,则通过测量P(I)就能计算出管道内的质量流量qm.四。低温余热发电选用热式流量计几个方面对于水泥行业特殊的气体状况,在选用热式流量计必须要考虑以下几方面:
  1.测单点流速还是测多点流速一根插入的检测杆可以测大管道中某一点的流速,如450系列;也可测多点的流速,它可反映管道内多点的流速分布,如K-BAR2000系列。考虑到投资的因素,另单点测量通过补偿修正也可推算出大管道的平均流速。故笔者建议余热发电系统还是用450系列单点式测速热式流量计。
  2.提供正确的流量和管道数据选用热式流量计时,一定要正确提供给制造商流量、温度、压力等数据和管道尺寸和管道布置情况,包括直管段的大小和管配件情况,流量计供货商可确定插入位置、插入深度和不同耐温等级的检测杆。理论上测量管道必须确保有前10后5的直管段长度,但现场情况是实现不了的,供货商会根据具体管道布置确定补偿修正方案。
  3.正确选择检测杆前述在低温余热发电系统中废气流量是变化的,还带有一定的粉尘,为此确定检测杆的材质和传感器的材质是非常重要的,余热发电系统应选耐磨的哈氏合金探头,检测杆长度也必须根据管道的资料确定。
  4.校验和修正大管道气体流量检测仪表的精度一般不高,但已能满足工控的要求,450系列单点式的精度为±1%的读数,由于流速大小直接影响传热的快慢,间接影响测量准确度,故其±1%的读数后还要加上0.1Nm/s的附加值。管道内气体的流速分布是影响流量测量的准确度的主要因素,对于工业现场应尽量使流速分布对称于轴线,即充分发展紊流,只有这样,仅测几点的流速才能推算流经整个截面的流量。
  热式流量计在出厂前已通过风洞标定,在现场投入运行前,供货商会根据具体管道的外形和直接,通过网格法测量前管段某一位置,不同插入深度的约十几个点的流速,并通过积累的经验公式推算出平均流速的补偿值,确保了测量的准确度。
  5.重复性在余热发电的自动化系统中,热式流量计只是在某一工艺点提供信息源的检测环节,它的输出所反映的气体流量信息,并不要求是某一确切值,而应是正确无误地反映流量的变化,如测定SF锅炉的进口废气量并不一定是风量的确切值,我们主要看它在工艺过程中的变化,通过调节以保持风量的恒定。这里要求热式流量计工作可靠,其输出与流量存在的单值函数关系不随意变化,即重复性较好就可以了。一般来讲直管段达不到要求的情况下,重复性可做到0.25%,而误差可能超过3%. 6.加装必要的吹扫装置由于废气带有一定的粉尘,笔者建议在现场加装必要的检测杆吹扫装置,以确保插入式热式流量计正常工作,供货商有专用的检测杆的可供选择。
  五、结论1.我国水泥行业当今大力推广废弃物综合和低温余热发电,“十一五”期间新型干法水泥生产线40%要上低温预热发电。
  2.低温余热发电系统中,入口废气温度和流量是SP余热锅炉和AQC余热锅炉重要技术参数,在低温余热发电监控系统中,采用结构简单的插入式热式流量计测量废气流量有诸多的优势。另外在水泥生产流程中,也可用插入式热式流量计监控如窑系统和立磨系统的废气流量。
  3.由于水泥工艺中废气含粉尘,而且在大管道以一定的流速流动,在选用时务必与热式流量计供货商“量身定制”,并确定直接安装时每一细节,有些必要的附件一定要在定货时确定。
  4.目前插入式热式流量计在国内其他行业,如电厂、钢厂、有色冶金等已较多采用,并取得了较好的效果。

余热发电机组改造案例
1 5000吨熟料生产线带补燃炉余热发电改造
1.1 主机配置情况及运行中存在的问题
(1)该公司共有两条5000吨熟料生产线,3台带补燃炉余热发电机组,其中1、2#装机12000kW,汽轮机型号为N12-35,3#装机12000kW,汽轮机型号为N12-25。
(2)1、2、3#机组共有2台煤粉炉,1台硫化床炉,2台SP余热炉,上述5台炉实行母管制联结,因3#机组压力低,母管到3#机组汽轮机蒸汽采取降压措施。3#机组还单独配置2台AQC锅炉。
(3)煤粉炉能力为56t/h,硫化床炉能力为75t/h,带1个SP炉时为92t/h(SP炉过热器在硫化床炉内)。
(4)控制方式:SP余热锅炉有3个挡板,AQC余热锅炉有4个挡板,2条窑共14个挡板,上述挡板由水泥窑中控室控制。1、2#机组在发电控制室采取集控,3#机组在3#机组发电控制室采取DCS控制,1、2#机组汽轮机为液压控制,3#机组为505控制。1、2#机组发电机为带碳刷励磁,3#机组发电机为无刷励磁。
1.2 改造方案
(1)SP锅炉为立式锅炉,由于目前SP锅炉运行不正常,积灰严重,且无排灰装置,挡板安装位置及方向不合理,漏风大。因此SP锅炉需整体撤除,更换成PH锅炉,且增加排灰装置,更换原有的3个挡板及电动执行器。对热力系统在原有基础上优化、使之更加合理,锅炉主蒸汽压力根据原有汽轮机的要求进行设计。
(2)原煤粉炉及其煤磨、煤供应系统、控制系统停止使用,锅炉出口温度根据原料烘干工艺要求进行控制,满足原料烘干对废热资源的需求。
(3)改进控制方式,提高劳动生产率。将汽轮机目前的液压控制或505控制液压调节系统改为DEH系统,整个发电系统采用DCS控制。
改造后2台新PH锅炉与1台硫化床炉、2台AQC锅炉实行母管连接,改造后为5炉3机系统,改造后系统对窑尾水泥工艺系统操作比以前稳定、可靠。
2 2000吨熟料生产线带补燃炉余热发电改造
2.1 主机配置情况及运行中存在的问题。
(1)该公司共有1台发电机组,汽轮机型号为N12-3.43汽轮机1段抽汽进高加;2段抽汽进除氧器;3段抽汽进低加。
(2)机组有1台由链条炉改造成的煤粉炉, 2台SP1余热炉,2台SP2余热炉,2台AQC余热炉,设计时2台SP2余热炉产生6MPa热水,AQC锅炉产生1Mpa146℃热水,用于除氧器,SP2锅炉产生3.8MPa饱和蒸汽,到煤粉炉内加热成过热蒸汽。
由于除氧器压力为0.2Mpa,AQC锅炉产生1MPa饱和蒸汽,实际无法使用,目前2台AQC锅炉已停止运行;SP1余热炉因积灰等原因投产以来基本没有使用;SP2锅炉由于除灰效果差,实际产蒸汽约为7-9 t/h,比原设计为13 t/h下降了21-47%,锅炉出口温度由原设计的220℃上升到290-305℃。
(3)由于SP2和AQC4台余热锅炉xx不能使用,2台SP2锅炉效率下降较多,机组已成为实际意义上的小火电,且煤粉炉能力为35t/h,正常使用时无法保证汽轮机达到正常出力,目前汽轮机出力为9300 kW/h,达不到12000kW/h设计值。
(4)控制方式:SP1余热锅炉有3个挡板,SP2余热锅炉有2个挡板,AQC余热锅炉有2个挡板,2条窑共16个挡板,上述挡板由电厂中控室控制(部分已经拆除或改为手动)。汽轮机为手动调节控制,DCS为MAX1000控制系统。
2.2 改造方案
(1)SP锅炉为立式锅炉,由于目前SP锅炉运行不正常,积灰严重,且无排灰装置,挡板安装位置及方向不合理,漏风大。因此SP锅炉需整体撤除,更换成PH锅炉,且需增加排灰装置,更换原有的挡板及电动执行器。
(2)新设计2台AQC锅炉,并增加沉降室,锅炉主蒸汽压力根据原有汽轮机的要求进行设计。
(3)对汽轮机和主蒸汽管道系统进行适当改造,优化原有的热力系统,对老电厂MAX1000控制系统进行改造,采用新的DCS系统。
上述改造后发电机组补燃锅炉退出生产后仅靠余热锅炉仍能正常发电,发电负荷能够达到8000kW左右,补燃锅炉投入运行后发电负荷能够达到11000 kW 以上,目前当补燃锅炉增加烟汽脱硫后补燃炉可以使用,未来当补燃炉不符合产业政策时也可退出运行,符合国家环保要求。

水泥窑余热发电技术与装备

图片:


图片:





摘要:华效资源简介
  华效资源有限公司是由原国家经贸委资源司为承担世界银行/全球环境基金项目而组织成立的有限责任公司。于1997年10月经国家工商总局批准注册成立,2003年改制成股权多元化的股份制企业。经过近十年的发展,已经形成了以余热发电系统工艺开发、发电主设备研发制造、发电工程总承包和项目投融资为一体的节能环保高科技集团公司。同时,公司还开发推广燃煤电厂电子束烟气脱硫和电厂水处理零排放等技术。
  华效资源与哈尔滨电站集团公司的发电设备国家工程研究中心共同组建了哈尔滨华晟余热发电设备有限公司。同时依托发电设备国家工程研究中心的核电技术,经过多年的技术开发和工程实际经验的总结,针对水泥窑、燃汽轮机联合循环、冶金烧结炉和冶金蒸汽热网余汽等余热资源的特点,开发制造了具有高技术难度的闪 蒸汽轮机和余热锅炉系统,可以对余热资源量身定做发电设备,形成了以闪蒸工艺专利技术和闪蒸汽轮机为核心的自主知识产权,从而形成了华效资源独特的技术优势和竞争力,为市场推广奠定了坚实的基础,也为我国余热资源高水平的利用提供了技术上的保证。
  华效资源是{dj2}拥有闪蒸余热发电工艺专利技术(先后有四项专利),同时自己开发制造余热发电主设备和开展工程总承包的专业高科技公司。独特的闪蒸发电专利技术具有高效和平衡两大特点,也就是在常规发电工艺的基础上,增加了闪蒸调节回路,可以将废气温度降低到90℃以下排入大气,极大的提高了余热发电系统的发电效率。同时,由于带有闪蒸调节回路,使得整个发电系统能很好的适应和平衡废气温度和流量发生较大幅度的变化,保持发电系统的稳定运行,也对原设备工艺(如水泥窑)起到了很好的系统平衡稳定的作用。
  2003年,公司首次将闪蒸余热发电技术,成功应用在华能集团海南发电公司南山电厂2×FT8燃汽轮机机组余热闪蒸发电项目上,并取得了国家电网的新发电工艺和装备上网的许可。之后公司将该技术应用于水泥行业,山东泰山水泥集团公司大型水泥窑(5000t/d+2500t/d)余热发电工程于2006年1月并网发电,在全国的水泥行业具有重要的示范意义。今年伊始,我公司与中国材料集团的中材水泥公司签订了中材郁南水泥公司等4个水泥厂的水泥窑余热发电工程。截止到目前,已完成国内4

   目前,根据中国水泥行业的实际情况,华效资源正在设计、制造和建设的水泥窑余热发电项目中,以2500t/d和5000t/d水泥窑为例,其发电能力如下:
  1、5000t/d水泥窑,按照目前的一般实际运行状况,根据实际测量的余热参数,设计装机10000kW发电系统,实际发电能力在9000~11000kW之间。
  2、2500t/d水泥窑,按照目前的一般实际运行状况,根据实际测量的余热参数,设计装机5000kW发电系统,实际发电能力在4500~5500kW之间。 对于具体的项目要根据实际的参数标定,而后单独设计余热发电系统和主设备。
 闪蒸余热发电技术简介
1、闪蒸余热发电技术概述
   闪蒸发电技术是一种能{zd0}限度地利用中、低温余热的纯余热利用发电技术。该技术主要以200℃~500℃的低温废气作为热源,通过余热锅炉生产出过热蒸汽和一定量的饱和水,将常规发电系统无法利用的部分低品位低温热能,通过闪蒸系统生产出饱和蒸汽,与过热蒸汽一起进入多参数汽轮机作功发电,从而增加余热发电功率,因此此技术一般可比常规技术多发电10~30%左右。同时,因为增加了闪蒸回路,使得该系统具有平衡和吸收不稳定热源发生的参数变化,保证发电系统安全、稳定、高效的运行,也对原工艺系统(例如水泥窑系统)起到了平衡稳定的作用。华效资源有限公司是国内{wy}拥有闪蒸发电技术的公司。
2、闪蒸复合发电的主要技术特点:
  闪蒸复合发电技术可{zd0}限度地利用200℃以上的低品位余热; 余热利用率80%左右,最终废气排出温度可控制在90℃以下;比常规余热发电技术效率高10~30%左右;
  闪蒸系统对余热源参数大幅度变化具有较强的适应性;
  闪蒸工艺和主设备xx拥有自主知识产权,所开发的多进汽闪蒸汽轮机达到国际同等技术水平,经过两个实际项目的运行效果良好。水泥窑余热锅炉的排灰除尘能力强,换热效率明显高于其他类型的锅炉。
  经济效益明显,一般项目都在2~4年收回投资。属纯余热利用技术,不增加任何对环境污染因素,社会效益高。

3、带调节回路的闪蒸余热发电工艺原理
  闪蒸余热发电工艺技术,具有热利用率和发电效率高、能平衡余热热源大幅度的不稳定波动的特点。这是通过独特的闪蒸回路和闪蒸主动调节组合控制系统实现的,其原理就是利用闪蒸技术对大幅波动的烟气余热发电系统进行主动调节,在系统(锅炉)吸收大量波动的烟气余热后,利用闪蒸技术仅产生少量蒸汽的原理,大大减小了对闪蒸余热发电系统的扰动,保证余热发电系统平稳运行。
带可调节闪蒸系统的余热发电工艺系统主要由锅炉(1和6)、闪蒸器11、闪蒸汽轮机12、发电机13、凝汽器14、水泵(15和16)、闪蒸主动调节组合控制器17和相应的专家管理自控软件等组成。可应用于多热源系统或单热源系统,可以用于立式锅炉或卧式锅炉。
  下图为带可调节闪蒸系统的多热源的余热发电工艺系统示意图。如图所示,所述多热源系统由一台立式锅炉1、一台卧式锅炉6和一套由汽轮机12和发电机13组成的汽轮发电机组组成。所述立式锅炉1中的省煤器2的出口之一接至

  本锅炉1的汽包5,通过蒸发受热面3及过热器4后的过热蒸汽引入汽轮机12,带动发电机13做功发电。省煤器2的出口之二接至卧式锅炉6的汽包10,通过水泵9和蒸发受热面7及过热器8后的过热蒸汽汇同过热器4中的过热蒸汽一同引入汽轮机12带动发电机13做功发电。省煤器2的出口之三经闪蒸主动调节组合控制器12接至闪蒸器11。闪蒸器11出口的闪蒸汽接入汽轮机12,带动发电机13发电,闪蒸器11下方出口的水汇同从汽轮机12的排汽与经凝汽器14进入凝结水泵15的水共同进入给水泵16,供给立式锅炉1中的省煤器2进行循环。闪蒸主动调节组合控制器(17)的专家管理系统软件通过对各相关数据的处理由控制器调节,达到对系统主动调节的目的。

2.1.3高效和平衡是闪蒸系统的两大特点
  蒸汽/热水闪蒸复合发电技术应用于水泥生产工艺更为有利,因为窑头余热气体成分近似于空气,SOx组份可忽略不计,不存在低温腐蚀问题,可以将锅炉排气温度控制在90℃左右,这样就实现了{zd0}限度地利用能量的目标。因此,闪蒸发电系统比一般单压发电系统的发电量提高10~30%,经济效益可观。
  闪蒸系统的另一个优势是,由于水泥窑运行时窑头排气余热温度(窑头余热锅炉入口烟气温度)波动,闪蒸系统可以通过主动调节组合控制器17(如系统图1)及闪蒸器11及回路系统,调节窑头余热锅炉给水量保证省煤器不会产生汽化,同时{zd0}限度吸收余热。在保证主动适应水泥窑热工状况的波动的同时,通过闪蒸系统起到缓冲作用,对水泥窑篦冷机出口风温波动有明显的稳定作用,大幅降低了窑头排风机入口风温的波动,对水泥窑的正常运行起到了很好的辅助作用。
2.1.4 闪蒸余热发电系统的技术门槛
  ①、华效资源利用自己的经验和设计软件等自有技术,聚集电厂工艺设计(电力设计院)、锅炉和汽轮机设备制造设计的技术人员共同完成系统的设计和技术集成及协调,以达到系统优化和合理组合,否则无法实现。华效资源已完整的组成了设备开发制造和工艺系统设计于一体的开发研制设计队伍,形成了华效资源的{zd0}优势。
  ②、双进汽(或多进汽)的闪蒸汽轮机是整个系统的关键,这项技术是移植了我国{wy}定点生产核潜艇汽轮机的哈电集团的核电技术实现的,同时也应用了如采用全三维叶片等大型发电机组的一些设计方法和技术。由于闪蒸汽属于饱和蒸汽,所以闪蒸汽含水量达到10%左右,必须对汽轮机采取除水等一系列措施。所以饱和蒸汽汽轮机的设计、开发和制造是整个系统的设备关键,具有{wy}性。
  ③、卧式锅炉的设计、制造也是系统中比较有高度的一项技术,华效资源完成的山东泰山水泥的卧式锅炉,实现除灰效果好、热效率高、操作简单和运行安全可靠。
  ④、对不稳定热源采取的调节主动控制系统及专家管理系统控制软件,是华效资源根据实际项目的运行情况和各种余热特性,独立开发出来的一套控制思路和软件系统,是整个系统的灵魂。
2.1.5 闪蒸技术的应用领域
燃汽轮机联合循环;
水泥窑余热发电
钢铁行业各种窑炉余热利用;
化工、焦炭、煤制气、玻璃窑等工艺过程产生的余热发电
2.2 </A>水泥窑余热发电技术比较
在我国纯低温余热发电主要方式有三种:单压工艺系统;双压工艺系统;闪蒸工艺系统,其中单压与双压为传统常规工艺系统。
2.2.1 单压工艺系统
  单压系统就是在上述闪蒸系统中去掉闪蒸器11及其回路、组合控制器17及其回路、调节阀18及其回路和调节控制阀19及其回路后的系统,如下图所示。

单压发电系统的特点是:

  ①、由于缺少闪蒸器及其回路,则没有二次蒸汽进入汽轮机发电,所以系统发电效率低。
  ②、由于没有闪蒸器和回路,因此窑头锅炉废气出口一般在150℃以上,有大量的热量没有吸收。而当水泥窑余热温度和流量发生突然增高的时候,没有任何方法可以吸收多余的热量,所以系统图2中省煤器(2)的水管中的水会发生汽化(专业术语教“汽塞”),使得锅炉汽包(5和10)的水位无法控制,从而造成整个发电系统停止运行。当发电系统停止运行的时候锅炉换热也将停止,所以锅 炉出口废气温度会大幅上升,使得水泥窑废气引风机的耗电量急剧上升,对整个水泥窑正常稳定的生产,造成了比较大的影响。
  ③、由于以上原因,单压系统发电效率低、系统只能间断运行或者是把系统的工质热水排放掉,所以整个发电项目的经济效益差。
  ④、系统属常规发电工艺,并且套用国家原有的系列发电设备,所以项目总投资略低于闪蒸发电项目,但投资回收期较长。

  ①、由于双压系统是在单压系统的基础上,又机械的叠加了一套较低压力的单压系统,以提高整个系统的发电效率,所以双压发电系统的发电量从理论上讲高于单压发电系统。
  ②、由于是两个单压系统的叠加,所以单压系统的第①和第②的问题依然存在,所以系统的调节能力和单压相同,也处于间断发电的状态,造成经济效益较差。

3.1闪蒸汽轮机的特殊设计

  由于闪蒸汽轮机有多级叶片在湿蒸汽区域工作,末级叶片湿度非常大,必须采取特殊措施,尽{zd0}可能地去除去蒸汽中的水分,减少对末级叶片的水蚀。主要采取的措施如下:
  1.末二级动叶片背弧顶部均采用焊接整条的司太立合金片,采用先进的工艺,保证焊接质量,可以很好地起到防止水刷、保护叶片的作用,倒数第三级动叶采用电火花强化处理以加强强度。
  2. 在结构上采用核电汽轮机特有的去湿结构设计,进一步去除通流蒸汽中的水分。核电汽轮机特殊的去湿结构设计主要有:在隔板和汽缸上设计专门的去湿环和捕水口,在末两级动叶片上设计有去湿槽结构,利用转子旋转的离心力作用将大部分水分从蒸汽内甩出主流区,达到去湿度、防水蚀的目的。
  3.在汽缸隔板结合面处采用特殊工艺(核电用),以保证结合面不被水蚀。
  4.把核电汽封的结构模式架接到闪蒸汽轮机的设计上。
3.2窑尾余热锅炉
  窑尾余热锅炉有两种结构形式:即卧式和立式。
3.2.1卧式炉
 华效资源采用的卧式炉主要优点有:不易积灰,这与锅炉内部的换热面采用挂件式布置有关;清灰容易,不存在累积搭桥的可能。因为外形结构与粉尘沉降室一致,机械振打落下的粉尘落入灰斗,不影响高温风机的运行。
卧式炉可能的问题点及对策:
 冷热烟气在炉内水平流动,可能会造成流场不均,影响换热效果。

 换热面积的设计上充分考虑此因素,受热面分段布置,出入口及内部设置特殊设计的导流板以达到均匀流场的效果。 漏风点较多,密封要求高 采用高质量回转喂料阀,在此基础上以加上灰柱密封,可以xx锁住漏风。 振打装置停运一段时间后开启时,大量粉尘落下有可能压死输送设备, 灰柱密封本身已将灰斗与输送设备隔开,xxxx了此种可能
3.2.2立式炉:
  立式锅炉主要优点:漏风点少、比较容易布置(可顺着窑尾风管方向布置)、占地面积较小。
立式锅炉主要缺点:在管束间距相同的情况下锅炉易积灰(特别是窑尾废气中的粉尘浓度较高)、管束间易出现搭桥现象,耗钢量相对较大。因为外形结构的原因(见附图),机械振打落下的粉尘落入一部分随废气进入高温风机,在振打装置停运一段时间后开机时,可能因大量粉尘进入高温风机而恶化高温风机的运行状况,从而影响整个烧成系统的稳定。
3.2.3关于锅炉积灰:
  锅炉的积灰主要与粉尘浓度和粉尘性质及受热面的布置水平有关,中空窑进入锅炉的废气温度约为850±50℃,此时的粉尘为熔融状态,容易附积在换热面和炉墙上,无论是立式还是卧式部署,通过振打吹扫等清灰手段不易xx,从而影响锅炉的热效率。
  新型干法窑预热器出口的烟气温度约330℃,此时的粉尘主要为生料粉,较为松散,在进行立式余热锅炉设计时,换热管束间距可以布置的相对大一些,换热管束采用光管,并通过机械振打等手段,在一定时间内可基本达到清灰目的,但由于工作温度较高,部分粉尘附着在换热面上,经振实后,逐渐形成陶瓷态外壳,不易xx并逐渐加厚。
卧式炉由于传热管竖直布置,不会出现上述问题。
3.1.4国外应用经验:
  最早开发水泥余热发电的国家是日本,其在早期也是卧式、立式都有,但立式炉的管束间距很大,以防止发生搭桥。因此卧式炉的体积是立式炉的3到4倍,差别很大。自从进入上世纪八十年代中期 ,立式炉经过3年以上的运行,其积灰不易xx的后果逐渐显现,锅炉运行工况恶化。立式炉逐渐退出市场,成为卧式炉的一统天下。
四、水泥窑余热发电工程设计和建设应注意的问题
  1、 余热发电的建设时机及与主生产线的协调目前水泥余热发电均是在水泥生产线投产后,以技术改造形式建设的。在进行           水泥生产线的设计时,基本上未考虑余热发电的要求,这样给余热发电系统的设计和建设带不小的困难,有些工程建设时考虑到了余热发电,但从工艺流程、运行参数确定、空间位置及建筑结构上,考虑得还是不多。因此,{zh0}的办法是设计水泥生产线的同时,提前做好余热发电系统的规划或初步设计,可以同步建设(这时余热发电系统的机组容量要考虑充分,留有一定余量),也可待水泥生产线投产后根据热工标定数据进行施工图设计和工程建设,尽量做到两方面兼顾。
  2、余热电站基本设计参数的确定
  余热发电工程是纯粹利用水泥生产工艺系统的废气余热回收发电的,废气的流量和温度是系统设计的最根本的参数,如果设定有误,则设计出的热力系统不能很好地利用废气余热发电,影响发电能力甚至发电系统的安全运行;另外水泥生产系统各主机设备的运行式况也是进行余热发电系统设计的重要参数,关系到发电系统能否很好地适应烧成系统的各种工况,以及发电系统并入后对主生产线的运行是否产生不利影响。有条件的企业应认真研究生产线投产以来的运行情况,总结出最有代表性的相关参数,结合对生产线的热工标定,提出能使余热发电系统{zh0}地适应主生产线运行的相关参数,从而达到{zh0}的效果。
3、余热发电站与水泥生产线的控制系统的关系
  余热发电站一般都配置独立的集散控制系统(DCS),但由于余热锅炉的操作与熟料烧成系统有千丝万缕的关系,两个控制系统的关系特别是相关废气挡板的操作控制是设计人员必须充分重视的问题。如有可能,应尽量将余热电站的操作台设置在中央控制室内;若条件不允许,也应充分考虑两个系统之间的数据通讯和各种联锁和保护。要在操作规程中明确规定有关操作程序,以保证窑操作员和电站操作员的动作协调,在保证熟料烧成系统热工稳定的前提下尽量提高发电功率,获得{zd0}的经济效益。
4、关于闪蒸水供热和制冷由闪蒸器排出的约120℃的热水可以作为工厂冬季供热、夏季致冷(吸收式)、职工生活设施等处的热源,只需投入少量的管道、水泵的投资,可以节约大量能源和投资。企业在进行工厂规划时,应统一考虑,以达{zj0}的经济和社会效益。

纯低温余热发电单、双压技术比较

一、热力系统
  双压技术:热力系统由窑头AQC双压余热锅炉、窑尾SP单压余热锅炉、补汽凝汽式汽轮机、发电机、电气综合自动化保护系统、DCS控制保护系统及其他附属系统组成。双压系统相对单压系统多了低压补汽系统和低压给水系统。系统运行自动化程度、可靠性和稳定性较高。但对余热回收技术和锅炉、汽轮机等主机设备制造技术要求也较高。
  单压技术:热力系统由窑头AQC单压余热锅炉,窑尾SP单压余热锅炉,凝汽式汽轮机,发电机,常规DCS控制系统及其它附属系统组成。窑头AQC余热锅炉只产生一种参数蒸汽,锅炉、汽轮机等主机设备及系统较双压系统简单,余热回收技术不高。

二、窑头AQC锅炉
  双压技术:因为窑头废气不需烘干水泥原料,通过收尘器全部排放。窑头AQC双压余热锅炉达到了尽量降低排烟温度的要求,通过对二种蒸汽参数充分优化,采取特殊设计措施,在锅炉内布置了足够的低压受热面 ,使锅炉排烟温度达到95℃左右,较单压系统多回收10﹪的热量。
  单压技术:窑头AQC锅炉只产生一种参数蒸汽,设计和制造较双压AQC锅炉简单,锅炉排烟温度120℃左右,回收热量较少。

三、窑尾SP锅炉
  双压技术:窑尾SP锅炉是单压系统,蒸气参数:1.6Mpa,320℃
  单压技术:窑尾SP锅炉是单压系统,蒸气参数:1.27Mpa,320℃
  窑尾SP锅炉除了蒸汽参数不同,其他设计方面基本相同。

四、汽轮机
  双压技术:水泥窑纯低温余热发电补式汽轮机(双压),是由中信重机自主开发,对汽轮机通流部分进行计算,兼顾额定工况、{zd0}工况和变工况以及汽轮机的实际结构,确定了合适的补汽点,设计了蜗壳式补汽缸,解决了补汽难的问题。
  具有独立知识产权。专利号:ZL-200747878。特点是适应余热低参数运行,效率高,较单压汽轮机多发电10﹪左右。
  单压技术:配置通用系列单压凝汽式汽轮机,余热回收量较少,影响发电量。

五、系统设计
  双压技术:1.充分考虑了水泥生产的主导地位,在发电厂事故和其他紧急情况下,不但保证发电系统的安全,而且保证水泥线的正常生产。2.设计前馈调节系统在水泥线一定波动范围内,保证发电系统正常运行。
  单压技术:除了余热锅炉外,其它系统类似常规发电厂。

六、发电量(以5000t/d干法线为例)
  双压技术:发电装机功率7.5MW,发电功率7.5MW,年发电量(按7000小时计算):5.25×107 KWh,较单压系统多发电1.05×107 KWh。
  单压技术:发电装机功率6MW,发电功率6MW,年发电量(按7000小时计算):4.2×107 KWh,较单压系统多发电1.05×107 KWh。

七、经济效益(以5000t/d干法线为例)
  双压技术:年收入(0.5元/KWh),2415万元 。单压技术:年收入(0.5元/KWh),1932万元
双压系统较单压系统多收入483万元,双压系统经济效益较单压系统好。

八、结论
  双压技术是目前国内{zxj}的余热发电技术,无论是双压余热锅炉还是补汽式凝汽式低温汽轮机、双压补汽DCS控制技术在国内具有先进水平,处于{lx1}地位。科学技术是{dy}生产力,中信重型机械公司先进的余热发电技术一定能为水泥企业增效降耗做出巨大的贡献。

水泥企业回转窑余热发电经济效益浅析

水泥工业是一个高耗能行业,据了解一般企业在水泥生产过程中的窑头熟料冷却机和窑尾预热器有大量的350℃以下的废热气不能被xx利用,其浪费的热量约占系统总热量的35%左右,因此,利用这些余热来进行发电或供热是一件对企业与国家都十分有益的好事。为了帮助水泥企业提高经济毅然效益,减少环境污染,杭州中能汽轮动力有限公司研制了适用于水泥行业纯低温余热发电用的冷凝式汽轮机,并已在多家水泥企业可靠高效地投入了运行,使这些水泥企业取得了很好的经济与社会效益。
  水泥余热发电的工作过程是:余热锅炉利用水泥回转窑窑头和窑尾的废热作为原料,使余热锅炉产生低压蒸汽,蒸汽进入汽轮机驱动发电机发电。这样窑头和窑尾的废热得到了有效利用,一来可以大大降低工厂用电,使制造水泥的成本下降,二来减少了废热用CO2等气体的排放,环境污染得到了有效的改善。我公司研以的纯低温余热发电有汽轮机因配备了高性能的数字调速器,可以实现汽轮机汽压力的自动调节,因此,即使余热锅炉因生产原因使产出的蒸汽压力不稳定,也不会影响汽轮机的安全运行。实践证明利用回转窑窑头和窑尾的废热来发电是水泥企业一条节能的有效途径。下面就浙江某水泥公司(2500吨/日和5000吨/日水泥生产线各一条)利用回转窑头和窑尾的废热来发电的效益作一分析,供广大水泥企事业的经营者参考:

  一、 低压凝汽式汽轮机参数:(进汽参数可根据用户情况选定)
  进汽压力:1.27 Mpa(A) 进汽温度:~300℃(汽源来自余热锅炉)
  排汽压力:0.007 Mpa(A) 额定转速:~3000转/分
  额定功率时耗汽量:~5.6kg/kw
  2500吨/日水泥生产线配置3000KW汽轮发电组一台
  5000吨/日水泥生产线配置6000KW汽轮发电组一台

  二、2004年3000KW+6000KW余热电站全部工程总投资:
按浙江北部地区2004年水泥行业建造余热发电每KW投资6660元估算则:
全部工程总投资费用为:9000KW×6660元=6000万元(实际结算费用还低一些)

  三、 余热发电的经济效益:(以2004年价格为基数)
A. 直接经济效益
1. 发电取得的直接效益;
汽轮发电机全年运行费用按:年发电按7000小时;电站自用电按8%;折旧按10年;人工工资、水资源、水处理及维修维护成本按0.55元/KWH计,则每年以卢产生的效益为:
[9000×7000×0.55×(1-8%)-9000×7000×0.055元]-6000万/10=2241.3万元
2. 增湿塔喷水减少,水泥熟料线用水消耗降低产生节水效益;
2500吨/天水泥线喷水量按500吨/天,5000吨/天水泥线喷水量按1000吨/天,减少喷水量按80%,水泥生产全年运行按300天,取水成本按1元/吨;
则全年效益 为:300天×(1000+500)×0.8×1元=39.6万元
3. 处供电减少,降变与供电部门结算方式,减少支出得效益:
在末建设余热发电之前,根据当地电力结算办法,基本电费部分,该公司采用按有电装机功率主要计算,每月需支出基本电费为113万元/月。建设余热发电站之后,经比较,按{zd0}需量结算较合理,经与电力部门协商,改变基本电费结算办法,改贝按{zd0}需量进行结算,申报{zd0}需量30000KW,结算按30元/KWH计,
全年节约电费:[113万元-30000×30万元] ×12=276万元
4. 工厂用电功率因素提高,改善电网电能质量,供电部门奖励收益;
未建设余热发电之前,该公司用电功率因素基本上在0.9108。建设余热发电站后,用电功率因素提高到0.9425,平均提高0.03以上,电费减少(0.6-0.15)%,该公司全年电费按1.5亿元算,全年奖励电费为15000万元×(5.6/6) ×0.45%=63万元
5. 窑头风机由于增加收尘因磨损减少产生效益(略);
总经济效益:2241.3万元+39.6万元+276万元+63万元=2620万元
回收年限:6000万元/2620万元=2.3年
B. 社会效益:
从能源利用角度来看,水泥熟料生产线30%左右的热能随废气排放到大气中,不仅造成能源的浪费,同时产生温室效应。建设余热发遇站后,不仅节约能源而且减少排放废气,全处按7000小时计,全年发电6300万KWH,相当节约标煤2.4129万吨(每KWH标煤按0.383kg计)。减少CO2万吨
(上述经济性指标由该用户提供)

  另外,根据实践经验,汽轮发电机的装机容量还可以更大一些,这样可以更充分地将水泥回转窑的余热用于发电。
  以上浅析因各地区电与煤、汽价有所不同面有出入,仅供参考,具体用户可单独分析,作为参考依据。
由此可见,水泥企业采用了余热发电后,经济效益和社会效益是十分可观的。是一项利国、利民、利企业的大好事,希望具备条件的有关企业择机而动,我公司将积极配合好你们做好这一节能项目,为水泥行业的发展和社会进步作出贡献。



郑重声明:资讯 【余热发电】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——