我们都知道,踩下制动踏板后车速就会逐渐放慢直至停止。但这是如何实现的呢?汽车是如何将您腿部发出的力传递到车轮的?力又是如何经过放大,足以让汽车这么大的物体停下来的呢?
本文是制动系统六个部分的{dy}部分,我们将按踏板到车轮的顺序,从头到尾详细讲述制动系统的各个部分。本文将介绍汽车制动系统的基本概念,并分析一个简单制动系统的工作原理。在其他文章中,我们将向您介绍汽车制动系统的其他部件,并详细讲述每个部件的工作原理。
您踩下制动踏板以后,汽车通过制动液将您的脚下发出的力传递到制动器。而制动实际上需要的力要远远大于您的脚所施加的力,因此汽车必须将您的脚施加的力放大。放大的方式有两种:
制动器通过摩擦将制动力传递到轮胎,轮胎则通过摩擦将制动力传递到路面。在开始讨论制动系统的各部件之前,先让我们熟悉一下以下三条原理:
杠杆作用 制动踏板以如下方式设计,它可以将您腿部发出的力在传递到制动液之前就放大几倍。
如上图所示,在杠杆的左端施加一个力F。杠杆左端的长度(2x)是右端(x)的两倍。因此,我们可以在杠杆右端获得一个2F的力,它运动的位移(y)则只是左端位移(2y)的一半。改变杠杆左右两端的相对长度,也就改变了放大系数。 任何液压系统的基本原理都很简单:作用于某一点的力被不能压缩的液体传递到另一点,这种液体通常是油类液体。 绝大多数制动系统都是通过这一过程放大制动力的。下面是一个最简单的液压系统: 简易液压系统 如上图所示:两个活塞(红色)分别装在充满油(蓝色)的两个玻璃圆桶中,圆桶之间由一个充满油的导管连接。如果给一个活塞(图中左边的活塞)施加一个向下的力,那么这个力就可以通过管道内的液压油传递到另一个活塞。由于油不能被压缩,所以这种传递方式的效率非常高,几乎所有的力都传递给了第二个活塞。液压系统{zd0}的好处就是,连接两个液压缸的导管可以是任何长度,也可以曲折成各种形状以绕过中间的其他部件。此外,还有一个好处就是液压管可以分支,这样一个就可以被分成多个副缸,如下图所示: 主缸与两个副缸 使用液压系统的另一个好处就是力的放大或缩小相当容易。如果您读过或齿轮比原理,您就会知道,用力换取位移在机械系统中极为常见。在液压系统中,您要做的就是改变其中一个活塞及其配套液压缸的尺寸,如下图所示:
上图中,力的放大倍数取决于活塞的直径。假设左边的活塞直径为5厘米,即半径为2.5厘米;右边的活塞直径为15厘米,即半径为7.5厘米。两个活塞的面积可以通过公式A=2πr2计算得出。左边活塞的面积为19.6平方厘米,右边活塞的面积为176平方厘米。右边活塞的面积是左边活塞的九倍。这就意味着给左边的活塞施加任何一个力,右边的活塞就会产生一个九倍的力。因此,如果给左边的活塞施加一个100公斤的向下的力,右边的活塞就会产生一个900公斤的向上的力。 {wy}的不足就是当左边的活塞向下移动9厘米时,右边的活塞只能向上移动1厘米。 摩擦力 摩擦力是一个物体在另一个物体上滑动时受到的阻力。请看下图,两个滑块都是用相同材料做成的,但其中一个较另一个更重。所以不难看出哪一个更难推动。 我们可以通过近距离地观察其中一个滑块和桌面来了解其中的原因: 用肉眼看起来很平滑的接触面,在显微镜下观察却是相当粗糙的。把滑块平放在桌面上时,滑块和桌面之间有许多小锯齿挤在一起,其中一些会相互咬合。滑块重量越大,咬合的锯齿就越多,其滑动阻力也会越大。 不同的材料具有不同的微观结构。例如,橡胶与橡胶之间就比与钢铁之间更难滑动。材料的类型决定了摩擦系数,此系数等于推动滑块所需的作用力与滑块重量的比值。在上例中,如果摩擦系数为1.0,那么推动重100公斤的滑块需要施加100公斤的力,推动重400公斤的滑块需要施加400公斤的力。如果摩擦系数为0.1,那么10公斤的力就可以推动重100公斤的滑块,而推动重400公斤的滑块也只需施加40公斤的力。 所以推动滑块所需的作用力与其重量成正比。滑块越重,推动它所需的作用力就越大。这一原理适用于制动器与这样的装置,在这种装置上,制动片紧压着旋转盘。制动片受到的压力越大,汽车的制动力就越大。
在了解实际的汽车制动系统的各个部件之前,我们先来看看一个简单的系统: 简单的制动系统
还可以看到,制动缸的直径是连接踏板的液压缸直径的三倍,这又把制动力放大了九倍。综上所述,此系统把您脚部发出的力放大了36倍。如果您对踏板施加了10公斤的力,那么在车轮处挤压制动片的力将达到360公斤。 另一方面。这个简单的制动系统还存在几个问题有待解决。渗漏会导致什么结果?如果发生缓慢的渗漏,最终将导致制动缸内的制动液不足,制动系统也会随之失效。反之,如果发生急剧渗漏,您{dy}次刹车时所有的制动液就会喷射而出,制动系统就会xx失灵。 |