散热风扇基础知识摘要阿里巴巴szhou0708的博客BLOG

散热器都需要通过风扇的强制对流来加快热量的散失,因此 一款风扇的好坏,对整个散热效果起到了决定性的作用。配备一个性能优良的CPU风扇也是保证整部电脑顺利运转的关键因素之一。

DC风扇运转原理: 根据安培右手定则,导体通过电流,周围会产生磁场,若将此导体置于另一固定磁场中,则将产生吸力或斥力,造成物体移动。在直流风扇的扇叶内部,附着一事先 充有磁性之橡胶磁铁。环绕着硅钢片,轴心部份缠绕两组线圈,并使用霍尔感应组件作为同步侦测装置,控制一组电路,该电路使缠绕轴心的两组线圈轮流工作。硅钢片产生不同磁极,此磁极与橡胶磁铁产生吸斥力。当吸斥力大于虱扇的静摩擦力时,扇叶自然转动。由于霍尔感应组件提供 同步信号,扇叶因此得以持续运转,至于其运转方向,可依佛莱明右手定则决定。

AC风扇运转原理: AC风扇与DC风扇的区别。前者电源为交流,电源电压会正负交变, 不像DC风扇电源电压固定,必须依赖电路控制,使两组线圈轮流工作才能产生不同磁场。AC风扇因电源频率固定,所以硅钢片产生的磁极变化速度,由电源频率 决定,频率愈高磁场切换速度愈快,理论上转速会愈快,就像直流风扇极数愈多转速愈快的原理一样。不过,频率也不能太快,太快将造成xx困难。我们电脑散热 器上应用的都是DC风扇。而一般一款好的风扇主要考察风量、转速、噪音、使用寿命长短、采用何种扇叶轴承等。

下文将对这些参数分别加以说明。

风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单位就是 CFM;如果按立方米来算,就是CMM。散热器产品经常使用的风量单位是CFM(约为0.028立方米/分钟)。50x50x10mm CPU风扇一般会达到10 CFM,60x60x25mm风扇通常能达到20-30的CFM。在散热片材质相同的情况下,风量是衡量风冷散热器散热能力的最重要的指标。显然,风量越 大的散热器其散热能力也越高。这是因为空气的热容比率是一定的,更大的风量,也就是单位时间内更多的空气能带走更多的热量。当然,同样风量的情况下散热效 果和风的流动方式有关。风量和风压风量和风压是两个相对的概念。一般来说,要设计风扇的风量大,就要牺牲一些风压。如果风扇可以带动大量的空气流动,但风 压小,风就吹不到散热器的底部(这就是为什么一些风扇转速很高,风量很大,但就是散热效果不好的原因)。相反的,风压大、风量就小,没有足够的冷空气与散 热片进行热交换,也会造成散热效果不好。一般铝质鳍片的散热片要求风扇的风压足够大,而铜质鳍片的散热片则要求风扇的风量足够大;鳍片较密的散热片相比鳍 片较疏的散热片,需要更大风压的风扇,否则空气在鳍片间流动不畅,散热效果会大打折扣。所以说不同的散热器,厂商会根据需要配合适当风量、风压的风扇,而 并不是单一追求大风量或者高风压的风扇。

风扇转速是指风扇扇叶每分钟旋转的次数,单位是rpm。风扇转速由电机内线圈的匝数、工 作电压、风扇扇叶的数量、倾角、高度、直径和轴承系统共同决定。转速和风扇质量没有必然的联系。风扇的转速可以通过内部的转速信号进行测量,也可以通过外 部进行测量(外部测量是用其它仪器看风扇转的有多快,内部测量则直接可以到BIOS里看,也可以通过软件看。内部测量相对来说误差大一些)。 ? 因为随着环境温度的变化,有时需要不同转速风扇来满足需求。一些厂商特意设计出可调节风扇转速的散热器,分手动和自动两种。手动的主要是让用户可以在冬天 使用低转速获得低噪音,夏天时使用高转速获得好的散热效果。自动类调温散热器一般带有一个温控感应器,能够根据当前的工作温度(如散热片的温度)自动控制 风扇的转速,温度高则提高转速,温度低则降低转速,以达到一个动态的平衡,从而让风噪与散热效果保持一个{zj0}的结合点。

风扇噪音 除了散热效果之外,风扇的工作噪音也是人们普遍关注的问题。风扇噪音是风扇工作时产生杂音的大小,受多方面因素影响,单位为分贝(dB)。测量风扇的噪声 时需要在噪声小于17dB的消音室中进行,距离风扇一米,并沿风扇转轴的方向对准风扇的进气口,采用A加权的方式进行测量。风扇噪声的频谱特性也很重要, 因此还需要用频谱仪记录风扇的噪声频率分布情况,一般要求风扇的噪声要尽量的小,而且不能存在异音。风扇噪音与摩擦力、空气流动有关。风扇转速越高、风量 越大,造成的噪音也会越大,另外风扇自身的震动也是不可忽视的因素。当然高品质的风扇的自身震动会很小,但前面两个者却是难以克服的。要解决这个问题,我 们可以尝试使用尺寸较大的风扇。应在在风量相同的情况下,大风扇在较低转速时的工作噪声要小于小风扇在高转速时的工作噪声。

另外一个我们容易忽略的因素是风扇的轴承。由于风扇高速转动时转轴和轴承之间要摩擦碰撞,所以也是风扇 噪声的一个主要来源。

风扇噪音的来源是因为:

1.振动假如风扇转子转动时转子的物理质心与转轴惯性中心不在同一轴上,便会造成转子的不平衡。转子的 物理质心与转轴惯性中心的最近距离称为偏心距,转子不不衡造成偏心距,当转子转动时由于离心力的作用产生一作用力于转轴支架而形成振动,且振动经由基路径 传递到机械各部份。

2.风噪风扇工作时,由于叶片周期性地承受出口不均匀气流的脉动力作用,产生噪声;另一方面,由于叶片 本身及叶片上压力的不均匀分布,转动时对周围气体及零件的扰动也构成旋转噪声;此外由于气体流经叶片时产生湍流附层面、旋涡及旋涡脱离,引起叶片上压力分 布的脉动而产生涡流噪声。这三种原因所引起的噪音可以综合性地称为“切风噪音”,一般风量风压大的风扇,其切风噪声也较大。

3.异音风噪听起来只有单纯的风声,而异音则不同,风扇运转时,除风声外,若还有其它声音发出,即可判 断风扇出现了异音。异音可能因轴承内有异物或变形,以及组装不当而出现碰撞,或电机绕组缠绕不均,造成松脱,都可能产生异音。风扇的使用寿命风扇的使用寿 命是指散热器产品正常工作的无故障工作时间,优质产品的使用寿命一般都能达到几万小时。在价格和性能差不多的情况下,选择使用寿命长的产品显然更能保护我 们的投资。

风扇的寿命由电机寿命、使用环境、电力供应等各方面因素所组成。送风形式最广泛的形式就 是用轴流风机(也就是最普遍的那种风扇)向下鼓风,之所以这么流行是因为综合效果好且成本低廉。如果把轴流风机的方向反过来,就变成向上抽风,在某些特别 型号的散热器中会采用这种形式。两种送风形式的差别在于气流形式的不同,鼓风时产生的是紊流,风压大但容易受到阻力损失;抽风时产生的是层流,风压小但气 流稳定。理论上说,紊流的换热效率比层流大得多,因此才成为主流设计形式。但是气流的运动与散热片也有直接关系。在某些散热片设计中(比如过于紧密的鳍 片),气流受散热片阻碍非常大,此时采用抽风可能会有更好的效果。至于采用侧面鼓风的设计,通常不会和顶部鼓风的效果有什么差别。而比较有效的改进方法是 建立CPU专用的散热风道,这样便不会受到CPU附近热空气的影响,相当于降低了环境温度。

轴流风机虽然应用广泛,但是也存在固有的缺陷。轴流风机受电机位置的阻挡,气流不能流畅通过鼓风区域的 中部,这称为“死区”。而在典型的散热片上,恰恰中部鳍片的温度{zg}。由于存在这种矛盾,采用轴流风机时,散热片的散热效果并不充分。

离心风机是与轴流风机xx不同鼓风形式,也逐渐开始使用在CPU散热当中,通常被电脑用户称为“涡轮风 扇”。这种风扇的优越之处在于很好地解决了“死区”问题。离心风扇与传统风扇的不同之处是其叶片旋转是在垂直的平面内进行的,进风口位于风扇的侧面。散热 器底面接收到的气流分布较均匀。离心风机的鼓风方向上没有障碍物,所以在各个位置都有同样的气流。同时它的风压和风量的调节范围也更大,转速控制的效果更 好。负面的影响和大功率轴流风机一样——价格高、噪音大。改进风道设计另外一种解决风力盲区的办法是改变风扇的出风方向。传统的散热器安装方式是气流朝 下,即垂直于CPU。改进风道设计之后,风扇改为侧向吹风,让气流的方向平行于CPU。侧向吹风的首要好处是彻底解决风力盲区,因为气流是平行通过散热鳍 片的,气流截面的四条边上的气流速度最快,而CPU的发热点正好位于一条边上。这样CPU散热底座吸收的热量可以被及时带走。另外一个好处是没有反弹的风 压(通常向下吹风时,一部分气流冲至散热底面并反弹,这会影响散热器内的气流运动方向,使的热交换的效率受到损失)。热交换效率要高于向下吹风

微型散热风扇的分类:
1.按散热风扇的工作电压分:交流散热风扇(AC FAN);直流散热风扇(DC FAN)
2.按散热风扇的驱动马达分:无刷直流散热风扇(DC BRUSHLESS FAN);有刷刷直流散热风扇(DC BRUSH FAN);无刷交流散热风扇(AC BRUSHLESS FAN)。
3.按风扇电机轴承系统 分:含油轴承型(SLEEVE BEARING);滚珠轴承型(BALL BEARING);陶瓷纳米轴承型(CERAMIC NANOMETER BEARING)。
4.按汽流方向分:轴流型风扇(AXAL FAN);离心型风扇(BLOWER FAN);横流风扇(CROSS FAN)。

随着技术的发展,在水中用的防水风扇也随着产生了,这算得上是风扇历史上的一个里程碑!



无显示 无显示
郑重声明:资讯 【散热风扇基础知识摘要阿里巴巴szhou0708的博客BLOG】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——