2010-04-19 17:36:41 阅读2 评论0 字号:大中小
引用
的
汽车新技术作业:汽车底盘新技术及应用
转向系统的新技术应用
目前,动力转向系统已成为一些轿车的标准设置,全世界约有一半的轿车采用动力转向。随着汽车电子技术的发展,目前一些轿车已经使用电动助力转向器,使汽车的经济性、动力性和机动性都有所提高。
1.1电动助力转向系统的英文缩写叫"EPS"(Electrical Power Steering)
它利用电动机产生的动力协助驾车者进行转向。此类系统一般由转矩传感器、电控单元(微处理器)、电动机、减速器、机械转向器和蓄电池电源所组成。
汽车转向时,转矩传感器检测到转向盘的力矩和转动方向,将这些信号输送到电控单元,电控单元根据转向盘的转动力矩、转动方向和车辆速度等数据向电动机控制器发出信号指令,使电动机输出相应大小及方向的转动力矩以产生助动力。当不转向时,电控单元不向电动机控制器发信号指令,电动机不工作。同时,电控单元根据车辆速度信号,通过电液转换器确定输给转向盘的作用力,减少驾车者在高速行驶时方向盘"飘"的感觉。
由于电动助力转向系统只需电力不用液压,与机械式液压动力转向系统相比较省略了许多元件。没有液压系统所需要的油泵、油管、压力流量控制阀、储油罐等,零件数目少,布置方便,重量轻。而且无"寄生损失"和液体泄漏损失。因此电动助力转向系统在各种行驶条件下均可节能80%左右,提高了汽车的运行性能。因此在近年得到迅速的推广,也是今后助力转向系统的发展方向。
有一些汽车冠以电动助力转向,其实不是真正意义上的纯电动的助力转向,它还需要液压系统,只不过由电动机供油。传统的液压动力转向系统的油泵由发动机驱动。为保证汽车原地转向或者低速转向时的轻便性,油泵的排量是以发动机怠速时的流量来确定的。而汽车行驶中大部分时间处于高于怠速的速度和直线行驶状态,只能将油泵输出的油液大部分经控制阀回流到储油罐,造成很大的"寄生损失"。为了减少此类损失采用了电动机驱动油泵,当汽车直线行驶时电动机低速运转,汽车转向时电动机高速运转,通过控制电动机的转速调节油泵的流量和压力,减少"寄生损失"。
1.2四轮转向系统
四轮转向系统是一个电子控制后轮操纵系统。该系统有4个主要部分:前轮定位感应器可操纵的固定偏轴伞齿轮后轴,电动机驱动的执行机构,控制单元。
转向盘位置和车辆速度传感器不断将数据传输给控制单元,控制单元据此确定后轮的转向角度。该系统有3种基本状态--正相、中间和负相。在较低速度的负相,后轮与前轮方向相反;中速时,后轮保持直行;高速时的正相,后轮与前轮方向相同。
高速时后轮与前轮保持相同的方向,可保证更高的稳定性,减少汽车在完成一项操纵动作时产生的偏摆和转动,使汽车即使在恶劣路面条件下也能在直行、转向或闪避时保持稳定的操纵响应。
使用该系统,高速行驶时的牵引稳定性也得到提高。后轮的正相状态会减小主车和拖挂车之间的铰接角度,减小拖车作用在主车后轮上的侧向力,避免主车和拖车的摇摆。
四轮转向系统同时改善了低速行驶时的操控性,与使用两轮转向系统相比,拖车更接近主车的行驶轨迹。在一些特殊行驶状态下,如市区交通堵塞、拖带挂车倒车和泊位时,四轮转向系统大大提高了操控性。
通过电子化控制后轮的方向,可以减小重型卡车的转弯半径。按照通用汽车公司对使用四轮转向系统的大型SUV和卡车的测试,转变半径平均减小了19%。一种重型卡车的转变半径从14m减小到11.4m。
2.汽车悬挂系统的新技术应用
悬架主要影响汽车的垂直振动。传统的汽车悬架是不可调整的,在行车中车身高度的变化取决于弹簧的变形。因此就自然存在了一种现象,当汽车空载和满载的时候,车身的离地间隙是不一样的。尤其是一些轿车采用比较柔软的螺旋弹簧,满载后弹簧的变形行程会比较大,导致汽车空载和满载的时候离地间隙相差有几十毫米,使汽车的通过性受到影响。
汽车不同的行驶状态对悬架有不同的要求。一般行驶时需要柔软一点的悬架以求舒适感,当急转弯及制动时又需要硬一点的悬架以求稳定性,两者之间有矛盾。另外,汽车行驶的不同环境对车身高度的要求也是不一样的。一成不变的悬架无法满足这种矛盾的需求,只能采取折中的方式去解决。在电子技术发展的带动下,工程师设计出一种可以在一定范围内调整的电子控制悬架来满足这种需求。这种悬架称为电控悬架,目前比较常见的是电控空气悬架形式。
2.1电控空气悬架
空气悬架多用于大客车上,停车时悬架下降汽车离地间隙减少,便于乘客上下车,开车时悬架上升便于通行。这种空气悬架系统由空气压缩机、阀门、弹簧、气室(气囊)、减振器所组成。车辆高度直接靠阀门控制气室的空气流进流出来调整。
现在轿车用的电控悬架引入空气悬架原理和电子控制技术,将两者结合在一起。典型的电控悬架由电子控制元件(ECU)、空气压缩机、车高传感器、转向角度传感器、速度传感器、制动传感器、空气弹簧元件等组成。
空气弹簧元件是由电控减振器、阀门、双气室所组成。电控减振器顶部有一个小型电动机,可通过它转动一个调整量孔大小的控制杆将阻尼分成多级,从而实现控制阻尼的目的。阀门也充当了一个调节气流的作用,通常双气室是连通的,合起来的总容积起着空气弹簧的作用,比较柔软;但当关闭双气室之间的阀门时,则以一个气室的容量来承担空气弹簧的作用,就会变得硬,因此阀门起到控制"弹簧"变软变硬的作用。
电控悬架工作时,阀门的相互作用控制通向空气弹簧元件的气流量。传感器检测出汽车的行驶状态并反馈至ECU,ECU综合这些反馈信息计算并输出指令控制空气弹簧元件的电动机和阀门,从而使电控悬架随行驶及路面状态不同而变化:在一般行驶中,空气弹簧变软、阻尼变弱,获得舒适的乘坐感;在急转弯或者制动时,则迅速转换成硬的空气弹簧和较强的阻尼,以提高车身的稳定性。同时,该系统的电控减振器还能调整汽车高度,可以随车速的增加而降低车身高度(减小离地间隙),减少风阻以节省能源;在车速比较慢时车身高度又可恢复正常。
2.2汽车主动悬架
现代汽车中的悬架有两种,一种是从动悬架,另一种是主动悬架。从动悬架即传统式的悬架,是由弹簧、减振器(减振筒)、导向机构等组成,它的功能是减弱路面传给车身的冲击力,衰减由冲击力而引起的承载系统的振动。
其中弹簧主要起减缓冲击力的作用,减振器的主要作用是衰减振动由于这种悬架是由外力驱动而起作用的,所以称为从动悬架。
而主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。由于这种悬架能够自行产生作用力,因此称为主动悬架。
主动悬架是近十几年发展起来的,由电脑控制的一种新型悬架,具备三个条件:
(1) 具有能够产生作用力的动力源;
(2) 执行元件能够传递这种作用力并能连续工作;
(3) 具有多种传感器并将有关数据集中到微电脑进行运算并决定控制方式。
因此,主动悬架汇集了力学和电子学的技术知识,是一种比较复杂的高技术装置。例如装置了主动悬架的法国雪铁龙桑蒂雅,该车悬架系统的中枢是一个微电脑,悬架上有5种传感器,分别向微电脑传送车速、前轮制动压力、踏动油门踏板的速度、车身垂直方向的振幅及频率、转向盘角度及转向速度等数据。电脑不断接收这些数据并与预先设定的临界值进行比较,选择相应的悬架状态。同时,微电脑独立控制每一只车轮上的执行元件,通过控制减振器内油压的变化产生抽动,从而能在任何时候、任何车轮上产生符合要求的悬架运动。因此,桑蒂雅桥车备有多种驾驶模式选择,驾车者只要扳动位于副仪表板上的"正常"或"运动"按钮,轿车就会自动设置在{zj0}的悬架状态,以求{zh0}的舒适性能。
另外,主动悬架具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起弹簧变形时,主动悬架会产生一个与惯力相对抗的力,减少车身位置的变化。例如德国奔驰2000款CL型跑车,当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多大的负载加到悬架上,使车身的倾斜减到最小。
3.汽车传动系统新技术应用
3.1无级变速技术(CVT)
无级变速技术(CVT, 即Continuously Variable Transmission)能实现传动比的连续改变,它是采用传动带和工作直径可变的主、从动轮相配合传递动力。可以使传动系与发动机工况实现{zj0}匹配,提高整车的燃油经济性和动力性,改善驾驶员的操纵方便性和乘员的乘坐舒适性。
金属带式无级变速器的系统主要包括主动轮组、从动轮组、金属带和液压泵等基本部件。金属带由两束金属环和几百个金属片构成。主动轮组和从动轮组都由可动盘和固定盘组成,与油缸靠近的一侧带轮可以在轴上滑动,另一侧则固定。可动盘与固定盘都是锥面结构,它们的锥面形成V型槽来与V型金属传动带啮合。发动机输出轴输出的动力首先传递到CVT的主动轮,然后通过V型传动带传递到从动轮,{zh1}经减速器、差速器传递给车轮来驱动汽车。工作时通过主动轮与从动轮的可动盘作轴向移动来改变主动轮、从动轮锥面与V型传动带啮合的工作半径,从而改变传动比。可动盘的轴向移动量是由驾驶者根据需要通过控制系统调节主动轮、从动轮液压泵油缸压力来实现的。由于主动轮和从动轮的工作半径可以实现连续调节,从而实现了无级变速。
在金属带式无级变速器的液压系统中,从动油缸的作用是控制金属带的张紧力,以保证来自发动机的动力高效、可靠的传递。主动油缸控制主动锥轮的位置沿轴向移动,在主动轮组金属带沿V型槽移动,由于金属带的长度不变,在从动轮组上金属带沿V型槽向相反的方向变化。金属带在主动轮组和从动轮组上的回转半径发生变化,实现速比的连续变化。
汽车开始起步时,主动轮的工作半径较小,变速器可以获得较大的传动比,从而保证驱动桥能够有足够的扭矩来保证汽车有较高的加速度。随着车速的增加,主动轮的工作半径逐渐减小,从动轮的工作半径相应增大,CVT的传动比下降,使得汽车能够以更高的速度行驶。
3.2奥迪全时四轮驱动系统(quattro)
奥迪quattro车型不同于一般的四驱车型,它是一个{yj}的四轮驱动系统,是一个高度智能化的电子、机械一体化装置,而且它还是一个免维护的系统。奥迪全时四轮驱动系统通常包括有带自动锁止装置的Torsen(扭力传感)中央差速器和带有刹车制动力作用于全部驱动轮上的电子差速锁止装置(EDL),以及全时驱动的四轮。
奥迪全时四轮驱动系统的核心就是位于前后驱动桥之间的负责把动力输出分配的Torsen中央差速器。它每时每刻根据前,后桥以及四个车轮上的传感器测得的数据,对前、后桥之间的扭矩分配作出自动的持续的调节。在正常的路面条件下,前,后桥之间的动力分配大约为50%:50%;而在极端的条件下, Torsen中央差速器借助于它的自动锁止装置按照保证{zd0}牵引力输出的原则可以将前、后桥的动力调节到25%:75%,或者是75%:25%,也就是每一桥上的扭力输出是在25%至75%之间任意可调的,这就充分保证即使当前、后桥中的一个处于极差的路况下,另一个桥将获得足够大的动力将车子开出这一区域。
位于前桥和后桥上的电子差速锁(EDL)则借助于每个车轮上ABS传感器测得的信号,对测出将要打滑的车轮施加相应的制动力,以防止这个车轮打滑,同时将更多的动力传递到另一侧的车轮。这一装置可实现对前桥或后桥左右两侧车轮的扭矩输出在20%至80%的范围内任意调节,以保证每个车轮都获得{zj0}的动力。
根据物理原理,可以简单地解释奥迪四驱车型相对于单个驱动轴汽车的优越性:在给定条件(轮胎和路面质量等)下,每个轮只能传输一个有限的合力。这个力包括纵向分力(牵引力)和横向分力。如果汽车的所有轮子都驱动,与传统汽车的双轮驱动相比,每个轮子只传输大约总牵引力的四分之一,因此全时四轮驱动增加了每个车轮和轮胎所能承受的横向力,这就是为什么四驱车能够平稳、连续转向的原因。
奥迪四驱车型的另一特点是发动机的制动力传送给所有四个轮。例如,如果司机在湿滑的路上快速行驶,急刹车和突然松开加速踏板时,四驱车的每个轮只传输四分之一的相应发动机制动力到公路,安全度相应地提高。因为各车轮上的作用力的减少意味着降低了这些情况下轮子旋转侧滑的危险。因此在所有驱动状态下,四驱车型都可提供最理想的牵引力和稳定性,驾驶者能够充分享受和利用其汽车的潜力,同时永远确保其高度的主动安全性。