铜及铜合金具有独特的物理性能,因而它的焊接性有别于钢和铝。焊接时主要问题如下:
(1)难熔合焊缝成形能力差
铜的热导率在20℃时比铁大7倍多,1000℃时大11倍多。焊接时热量迅速以加热区传出去,使加热范围扩大,焊件厚度越大,散热越严重。焊接区难以达到熔化温度,所以母材和填充金属难熔合。为此,焊接时需使用大功率的热源,焊前常需预热。
铜在熔化温度时,表面张力比铁小1/3,流动性比钢大l~l.5倍。因此,表面成形能力差.当用大功率熔化极气体保护焊或埋弧焊时,熔化金属易流失。为此,单向焊时,背面需使用衬垫(板)等成形装置。
(2)焊接应力与变形大
铜的膨胀系数比铁大15%,而收缩率比铁大1倍以上,又由于铜的导热能力强;冷却凝固时,变形量大。当焊接刚性大的焊件或焊接变形受阻时,就会产生很大的焊接应力,成为导致焊接裂纹的力学原因。
(3)易产生热裂纹
在焊缝和热影响区上都可能产生热裂纹,主要原因是铜在液态下易氧化生成氧化亚铜(Cu2O),它溶于液态铜而不溶于固态铜,冷凝过程中与铜生成熔点略低于铜的Cu2O+Cu共晶(熔点为1064℃)。 铜中若有杂质铋(Bi)和铅(Pb)等,在熔池结晶过程中也生成低熔点共晶Cu十Bi(熔点270℃)、Cu+Pb(熔点326℃),这此共晶物分布在焊缝金属的枝晶间或晶界处。当焊缝处于高温时,热影响区的低熔共晶物重新熔化,在焊接应力作用下,在焊缝或热影响区上就会产生热裂纹。又因铜和铜合金在加热过程中无同素异构转变,晶粒易长大,有利于低熔点共晶薄膜的形成,从而增大了热裂倾向。
为了防止热裂纹,从冶金方面须严格限制铜中杂质的含量,增强对熔池的脱氧能力;若有可能选用获得双相组织的焊接材料,以破坏低熔共晶薄膜的连续性,打乱柱状晶的方向。另外,从力学方面须减小焊接应力的作用。
(4)易产生气孔
铜及铜合金熔焊时,焊缝产生的气孔比焊接钢时严重得多。这与铜及铜合金的冶金特性和物理特性有关。
从冶金特性方面,焊接时铜中存在有溶解性气体和氧化还原反应产生的气体。氢在铜中的溶解度与温度有关,随温度升降而增减,当铜处于液-固态转变时,有一突变,见图7-8-1。说明冷凝过程要析出大量扩散性氢;熔池中的Cu2O在凝固时因不溶于铜而析出,便与氢或CO反应生成水蒸汽或CO2气体,因不溶于铜而逸出。
从物理特性方面,铜的热导率比铁大7倍以上,焊缝金属的结晶速度很大,在这种条件下氢的扩散逸出和水CO2.上浮极为困难,往往是来不及逸出和上浮便形成了气孔。减少或防止铜焊缝中的气孔,主要是减少氢和氧的来源以及采用预热等方法延长熔池存在时间,使这些气体易于逸出。加强对焊接区的保护和在焊接材料中加入脱氧剂,都可减少气孔的产生。
(5)接头性能下降
1)接头塑性显著下降 因铜及铜合金一般不发生相变,焊缝和热影响区晶粒易长大。各种脆性低熔共晶出现于晶界。其结果是使接头的塑性和韧性显著下降。
2)导电性能下降 铜越纯其导电性能就越好,焊接过程中任何杂质和合金元素的加入,都导致电导率降低。
3)耐蚀性变差 铜合金的耐蚀性是依赖于锌、铝、锰、镍等合金元素的加入,而这些元素在焊接过程中蒸发、烧损,都不同程度上使接头的耐蚀性能下降。焊接应力的存在会使得那些对应力腐蚀较敏感的高锌黄铜、铝青铜、镍锰青铜的焊接接头在腐蚀环境中过早失效。
改善接头性能的主要措施可以是控制杂质含量;加强焊接区的保护以减少合金元素的烧损;通过合金化对焊缝进行变质处理;减少热的作用和焊后xx应力处理等。
必须指出,铜及铜合金的种类繁多,其成分和性能差别很大,因而焊接性表现各异。在作焊接性分析时,除注意上述共性问题外,还应针对铜合金的不同类型及其对各种焊接方法的适应性作出具体评价。