近几年,随着高耗能企业的迅速发展以及35KV室内开关柜的大量使用,使得电缆出线比例逐年增多,导致对地电容电流剧增。由于35 kV系统单相接地引发的电缆爆炸愈来愈多,由此带来的经济损失和社会影响也越来越大。 原因分析 (一)谐振过电压 35kV系统为不接地系统,电网中存在大量星形接线的电压互感器,其一次绕组直接接地,成为电网对地电容电流、高次谐波电流的充放电途径,当线路接地时,电压互感器的铁心线圈相当于与非故障线路对接电容并联,构成了可能产生谐振的并联电路,由于相对地电压升高倍,有可能使得电压互感器的铁心出现饱和或接近饱和,阻抗变小,电路中出现容抗和阻抗相等的情况,从而产生了并联谐振,此时互感器一次侧的电流{zd0},这样有可能使电压互感器的高压侧熔断件熔断,或者烧坏电压互感器,以及电缆爆炸。此种情况往往在变电所投产初期(线路出线回路少)不是很明显,但随着线路出线回路的增多(各回线路对地的等值电容量增大,容抗增大)出现谐振的情况较多。另外由于35KV系统为室内开关柜,35KVPT接地点多,一般为4个接地点,这也为发生谐振过电压提供了条件。 (二)弧光接地过电压 正常情况下,35 kV中性点不接地系统发生单相接地,允许运行2h。但为什么频繁地发生单相接地迅速发展成相间事故,使事故扩大化呢?原因之一是系统中个别设备存在绝缘薄弱点,另一个重要的原因是由于35 kV系统电容电流较大,接地电弧变得不能自熄而产生了较高倍数的弧光接地过电压,据国内外经验,弧光接地过电压{zd0}可达3-5倍。 在单相接地事故中,通过弧光的电流乃是健全相对地电容电流的总和。为了减小故障总电流,往往采用消弧线圈。装设消弧线圈后,接地点残流不超过10 A,接地电弧便不能维持,会自行熄灭。 解决办法 (一)谐振过电压 a 优先选用励磁特性饱和点较高的抗谐振型电压互感器; b 减少同一系统中电压互感器高压侧中性点接地数量,除电源侧电压互感器高压侧中性点接地外,其它电压互感器中性点尽可能不接地; c 在电压互感器开口三角绕组装设二次消谐器或消谐电阻; d 在电压互感器一次绕组中性点装设一次消谐器。 适当选择消弧线圈的脱谐度,避开电网谐振点。 (二)弧光接地过电压 a 装设消弧线圈 为保证接地电弧自熄,35 kV中性点不接地系统电容电流超过10 A时,一律应装设消弧线圈。 b 合理选择消弧线圈容量 消弧线圈的分头调整,不能仅仅依据理论计算值,应根据实测电容电流值来调整。否则,由于计算误差大,造成消弧线圈发挥不了应有的作用,形同虚设;更为严重的是,有可能造成消弧线圈欠补偿,形成谐振过电压,从而产生负作用。容性电流测试工作应定期开展,测试方法可采用外加电容法,简便有效,适合现场应用。 c 消弧线圈的选型 老式手动消弧线圈除需停电调分头,不能自动跟踪补偿电网电容电流等缺点外,脱谐度也很难保证在10%以内,其运行效果不能令人满意。据国内外资料统计分析表明,采用老式手动消弧线圈补偿的电网,单相接地发展成相间短路的事故率在20%~40%之间,比采用自动跟踪补偿的电网高出3倍以上。因此,新上消弧线圈应装设自动跟踪补偿的消弧线圈。 目前,自动消弧线圈有四大类:(1)用有载分接开关调节消弧线圈的分接头;(2)调节消弧线圈的铁心气隙;(3)直流助磁调节;(4)可控硅调节消弧线圈。 为保证老式手动消弧线圈充分发挥作用,克服固有的缺点,可分轻重缓急逐步改造成自动跟踪式。 |