相1_灵_百度空间

噪点

数码相机的噪点(noise)也称为噪声、噪音,主要是指CCD(CMOS)将光线作为接收信号接收并输出的过程中所产生的图像中的粗糙部分,也指图像中不该出现的外来像素,通常由电子干扰产生。看起来就像图像被弄脏了,布满一些细小的糙点。我们平时所拍摄的数码照片如果用个人电脑将拍摄到的高画质图像缩小以后再看的话,也许就注意不到。不过,如果将原图像放大,那么就会出现本来没有的颜色(假色),这种假色就是图像噪音。

ISO越高,则产生的噪点越多

除了噪点外,还有一种现像很容易噪点相混淆,这就是坏点。在数码相机同一设置条件下,如果所拍的图像中杂点总是出现在同一个位置,就说明这台数码相机存在坏点,一般厂家对坏点的数量有规定,如果坏点数量超过了规定的数量,可以向经销商和厂家更换相机。假如杂点并不是出现在相同的位置,则说明这些杂点是由于使用时形成的噪点。

不同ISO下的噪点水平

噪点产生的原因:

1、长时间曝光产生的图像噪音

这种现像主要大部分出现在拍摄夜景,在图像的黑暗的夜空中,出线了一些孤立的亮点。可以说其原因是由于CCD无法处理较慢的快门速度所带来的巨大的工作量,致使一些特定的像素失去控制而造成的。为了防止产生这种图像噪音,部分数码相机中配备了被称为"降噪"的功能。

如果使用降噪功能,在记录图像之前就会利用数字处理方法来xx图像噪音,因此在保存完毕以前就需要花费一点额外的时间。

2、用JPEG格式对图像压缩而产生的图像噪音

由于JPEG格式的图像在缩小图像尺寸后图像仍显得很自然,因此就可以利用特殊的方法来减小图像数据。此时,它就会以上下左右8×8个像素为一个单位进行处理。因此尤其是在8×8个像素边缘的位置就会与下一个8×8个像素单位发生不自然的结合。

由JPEG格式压缩而产生的图像噪音也被称为马赛克噪音(Block Noise),压缩率越高,图像噪音就越明显。

虽然把图像缩小后这种噪音也会变得看不出来,但放大打印后,一进行色彩补偿就表现得非常明显。这种图像噪音可以通过利用尽可能高的画质或者利用JPEG格式以外的方法来记录图像而得以解决。

3、模糊过滤造成的图像噪音

模糊过滤造成的图像噪音和JPEG一样,在对图像进行处理时造成的图像噪音。有时是在数码相机内部处理过程中产生的,有时是利用图像润色软件进行处理时产生的。对于尺寸较小的图像,为了使图像显得更清晰而强调其色彩边缘时就会产生图像噪音。

所谓的清晰处理就是指数码相机具有的强调图像色彩边缘的功能和图像编辑软件的“模糊过滤(Unsharp Mask)”功能。在不同款式的数码相机中也有一些相机会对整个图像进行色彩边缘的强调。而处理以后就会在原来的边缘外侧出现其他颜色的色线。

如果将图像尺寸缩小以后用于因特网的话,图像不是总觉得会变得模糊不清吗?此时如果利用“模糊过滤”功能对图像进行清晰处理,图像看起来效果就会好一些。不过由于产生了图像噪音,在进行第二次或第三次处理时,这种图像噪音就显得很麻烦。切忌不要因为处理过度而使图像显得过于粗糙。

曝光模式

曝光英文名称为Exposure,曝光模式即计算机采用自然光源的模式,通常分为多种,包括:快门优先、光圈优先、手动曝光、AE锁等模式。照片的好坏与曝光量有关,也就是说应该通多少的光线使CCD能够得到清晰的图像。曝光量与通光时间(快门速度决定),通光面积(光圈大小决定)有关。

很多小型数码相机是通过菜单来选择暴光模式的

快门和光圈优先:

小星补充:快门优先俗称“S门”,光圈优先俗称“A门”,不要搞错了哦:)

为了得到正确的曝光量,就需要正确的快门与光圈的组合。快门快时,光圈就要大些;快门慢时,光圈就要小些。快门优先是指由机器自动测光系统计算出曝光量的值,然后根据你选定的快门速度自动决定用多大的光圈。光圈优先是指由机器自动测光系统计算出曝光量的值,然后根据你选定的光圈大小自动决定用多少的快门。拍摄的时候,用户应该结合实际环境把使曝光与快门两者调节平衡,相得益彰。

光圈越大,则单位时间内通过的光线越多,反之则越少。光圈的一般表示方法为字母“F+数值”,例如F5.6、F4等等。这里需要注意的是数值越小,表示光圈越大,比如F4就要比F5.6的光圈大,并且两个相邻的光圈值之间相差两倍,也就是说F4比F5.6所通过的光线要大两倍。相对来说快门的定义就很简单了,也就是允许光通过光圈的时间,表示的方式就是数值,例如1/30秒、1/60秒等,同样两个相邻快门之间也相差两倍

光圈和快门的组合就形成了曝光量,在曝光量一定的情况下,这个组合不是惟一的。例如当前测出正常的曝光组合为F5.6、1/30秒,如果将光圈增大一级也就是F4,那么此时的快门值将变为1/60,这样的组合同样也能达到正常的曝光量。不同的组合虽然可以达到相同的曝光量,但是所拍摄出来的图片效果是不相同的。

快门优先是在手动定义快门的情况下通过相机测光而获取光圈值。举例说明,快门优先多用于拍摄运动的物体上,特别是在体育运动拍摄中最常用。很多朋友在拍摄运动物体时发现,往往拍摄出来的主体是模糊的,这多半就是因为快门的速度不够快。在这种情况下你可以使用快门优先模式,大概确定一个快门值,然后进行拍摄。因为快门快了,进光量可能减少,色彩偏淡,这就需要增加曝光来加强图片亮度。物体的运行一般都是有规律的,那么快门的数值也可以大概估计,例如拍摄行人,快门速度只需要1/125秒就差不多了,而拍摄下落的水滴则需要1/1000秒。

手动曝光模式:

手控曝光模式每次拍摄时都需手动完成光圈和快门速度的调节,这样的好处是方便摄影师在制造不同的图片效果。如需要运动轨迹的图片,可以加长曝光时间,把快门加快,曝光增大(很多朋友在拍摄运动物体时发现,往往拍摄出来的主体是模糊的,这多半就是因为快门的速度不够快。如果快门过慢的话,那么结果不是运动轨迹,而是模糊一片);如需要制造暗淡的效果,快门要加快,曝光要减少。虽然这样的自主性很高,但是很不方便,对于抓拍瞬息即逝的景象,时间更不允许。

AE模式:

AE全称为Auto Exposure,即自动曝光。模式大约可分为光圈优先AE式,快门速度优先AE式,程式AE式,闪光AE式和深度优先AE式。光圈优先AE式是由拍摄者人为选择拍摄时的光圈大小,由相机根据景物亮度、CCD感光度以及人为选择的光圈等信息自动选择合适曝光所要求的快门时间的自动曝光模式,也即光圈手动、快门时间自动的曝光方式。这种曝光方式主要用在需优先考虑景深的拍摄场合,如拍摄风景、肖像或微距摄影等。

多点测光:

多点测光是通过对景物不同位置的亮度,通过闪光灯补偿等办法,达到{zj0}的摄影效果,特别适合拍摄别光物体。首先,用户要对景物背景,一般为光源物体进行测光,然后进行AE锁定;第二步是对背光景物进行测光,大部分的专业或准专业相机都会自动分析,并用闪光灯为背光物体进行补光。

感光器件

  提到数码相机,不得不说到就是数码相机的心脏——感光器件。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。感光器是数码相机的核心,也是最关键的技术。数码相机的发展道路,可以说就是感光器的发展道路。目前数码相机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。

一、CCD

大部分数码相机使用的感光元件是CCD(Chagre Couled Device),它的中文名字叫电荷耦合器,是一种特殊的半导体材料。他是由大量独立的光敏元件组成,这些光敏元件通常是按矩阵排列的。光线透过镜头照射到CCD上,并被转换成电荷,每个元件上的电荷量取决于它所受到的光照强度。当你按动快门,CCD将各个元件的信息传送到模/数转换器上,模拟电信号经过模/数转换器处理后变成数字信号,数字信号以一定格式压缩后存入缓存内,此时一张数码照片诞生了。然后图像数据根据不同的需要以数字信号和视频信号的方式输出。

目前主要有两种类型的CCD光敏元件,分别是线性CCD和矩阵性CCD。线性CCD用于高分辨率的静态照相机,它每次只拍摄图象的一条线,这与平板扫描仪扫描照片的方法相同。这种CCD精度高,速度慢,无法用来拍摄移动的物体,也无法使用闪光灯。因此在很多场合不适用,不在今天我们讨论的范围里。

另一种是矩阵式CCD,它的每一个光敏元件代表图象中的一个像素,当快门打开时,整个图象一次同时曝光。通常矩阵式CCD用来处理色彩的方法有两种。一种是将彩色滤镜嵌在CCD矩阵中,相近的像素使用不同颜色的滤镜。典型的有G-R-G-B和C-Y-G-M两种排列方式。这两种排列方式成像的原理都是一样的。在记录照片的过程中,相机内部的微处理器从每个像素获得信号,将相邻的四个点合成为一个像素点。该方法允许瞬间曝光,微处理器能运算地非常快。这就是大多数数码相机CCD的成像原理。因为不是同点合成,其中包含着数学计算,因此这种CCD{zd0}的缺陷是所产生的图象总是无法达到如刀刻般的锐利。

另一种处理方法是使用三棱镜,他将从镜头射入的光分成三束,每束光都由不同的内置光栅来过滤出某一种三原色,然后使用三块CCD分别感光。这些图象再合成出一个高分辨率、色彩xx的图象。如300万像素的相机就是由三块300万像素的CCD来感光。也就是可以做到同点合成,因此拍摄的照片清晰度相当高。该方法的主要困难在于其中包含的数据太多。在你照下一张照片前,必须将存储在相机的缓冲区内的数据xx并存盘。因此这类相机对其他部件的要求非常高,其价格自然也非常昂贵。

二、SUPER CCD

SUPER CCD是由富士公司{dj2}推出的,它并没有采用常规正方形二极管,而是使用了一种八边形的二极管,像素是以蜂窝状形式排列,并且单位像素的面积要比传统的CCD大。将像素旋转45度排列的结果是可以缩小对图像拍摄无用的多余空间,光线集中的效率比较高,效率增加之后使感光性、信噪比和动态范围都有所提高。富士公司宣称,SUPER CCD可以实现相当于ISO 800的高感度,信噪比比以往增加30%左右,颜色的再现也大幅改善,电量消耗减少了许多。富士公司宣称SUPER CCD可与多40%像素的传统CCD的分辨率相媲美, SUPRE CCD打破了以往CCD有效像素小于总像素的金科玉律,可以在240万像素的SUPER CCD上输出430万像素的画面来。因此,富士公司和他们的SUPER CCD一推出即在业界引起了广泛的xx。

在传统CCD上为了增加分辨率,大多数数码相机生产厂商对民用级产品采取的办法是不增大CCD尺寸,降低单位像素面积,增加像素密度。我们知道单位像素的面积越小,其感光性能越低,信噪比越低,动态范围越窄。因此这种方法不能无限制地增大分辨率。如果不增加CCD面积而一味地提高分辨率,只会引起图象质量的恶化。但如果在增加CCD像素的同时想维持现有的图象质量,就必须在至少维持单位像素面积不减小的基础上增大CCD的总面积。但目前更大尺寸CCD加工制造比较困难,成品率也比较低,因此成本也一直降不下来。

           

传统CCD中的每个像素由一个二极管、控制信号路径和电量传输路径组成。SUPER CCD采用蜂窝状的八边二极管,原有的控制信号路径被取消了,只需要一个方向的电量传输路径即可,感光二极管就有更多的空间。SUPER CCD在排列结构上比普通CCD要紧密,此外像素的利用率较高,也就是说在同一尺寸下,SUPER CCD的感光二极管对光线的吸收程度也比较高,使感光度、信噪比和动态范围都有所提高。

那为什么SUPER CCD的输出像素会比有效像素高呢?我们知道CCD对绿色不很敏感,因此是以G-B-R-G来合成。各个合成的像素点实际上有一部分真实像素点是共用,因此图象质量与理想状态有一定差距,这就是为什么一些xx专业级数码相机使用3CCD分别感受RGB三色光的原因。而SUPER CCD通过改变像素之间的排列关系,做到了R、G、B像素相当,在合成像素时也是以三个为一组。因此传统CCD是四个合成一个像素点,其实只要三个就行了,浪费了一个,而SUPER CCD就发现了这一点,只用三个就能合成一个像素点。也就是说,CCD每4个点合成一个像素,每个点计算4次;SUPER CCD每3个点合成一个像素,每个点也是计算4次,因此SUPER CCD像素的利用率较传统CCD高,生成的像素就多了。

科学是要以事实来说话的,再有道理的理论没有事实基础还是一句空话。经过我们反复对富士SUPER CCD的几款民用级数码相机试拍后发现,至少对民用级的SUPER CCD来说,在其{zd0}分辨率的图象质量并没有人们想象地那么好。除了色彩还原比较艳丽外,我们可以在蓝天和暗部细节发现有明显的噪音信号,成像清晰度一般。这就说明240万像素的民用级SUPER CCD无法达到其标称的430万输出像素。那么240万像素的SUPER CCD到底相当于多少像素的CCD呢?根据上一段的陈述,我认为SUPER CCD对像素的利用率比CCD高33%,因此其输出像素也应该比CCD高33%。富士FINEPIX 4900的总像素为240万像素,根据我的估算,它的输出像素大概相当于320万(240×133%=320万)。而4900标称的输出尺寸是430万像素,那么这110万像素是怎么多出来的呢?我想可能是使用了插值技术。这就可能是为什么我们在以100%的尺寸看SUPER CCD拍摄的照片总不是很清楚的原因了。如果要客观公正地对待使用SUPER CCD的FINEPIX4900、FINEPIX4700等相机就应该将其看作一部320万像素的数码相机。

三、CMOS

我们对CMOS的认识是从去年佳能公司发布EOS D30的准专业级数码机身开始的。当时许多业内人士都大吃一惊,对采用这种廉价的材料来做感光元件感到不可思议,认为CMOS的成像质量无法满足较高要求的专业用户的需要。那用CMOS做的感光元件在成像质量上真的一无是处吗?还是让我们先来了解一下什么是CMOS吧。CMOS即互补性金属氧化物半导体,其在微处理器、闪存和ASIC(特定用途集成电路)的半导体技术上占有{jd1}重要的地位。CMOS和CCD一样都可用来感受光线变化的半导体。CMOS主要是利用硅和锗这两种元素所做成的半导体,通过CMOS上带负电和带正电的晶体管来实现基本的功能的。这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。

CMOS针对CCD最主要的优势就是非常省电。不像由二极管组成的CCD,CMOS 电路几乎没有静态电量消耗,只有在电路接通时才有电量的消耗。这就使得CMOS的耗电量只有普通CCD的1/3左右,这有助于改善人们心目中数码相机是"电老虎"的不良印象。我们知道在佳能EOS系列AF相机上,CMOS一直在测光对焦系统中使用。佳能在这方面有雄厚的技术力量和丰富的经验。发展到今日已经比较容易地以较低的成本制造较大大尺寸的CMOS感光芯片,并且CMOS可以将影像处理电路集成在芯片上。CMOS主要问题是在处理快速变化的影像时,由于电流变化过于频繁而过热。暗电流抑制得好就问题不大,如果抑制得不好就十分容易出现杂点。D30有专门的回路控制暗电流,在长于1秒的曝光时降噪系统会自动工作,可以从很大程度上降低噪点的产生。

此外,CMOS与CCD的图像数据扫描方法有很大的差别。举个例子,如果分辨率为300万像素,那么CCD传感器可连续扫描300万个电荷,扫描的方法非常简单,就好像把水桶从一个人传给另一个人,并且只有在{zh1}一个数据扫描完成之后才能将信号放大。CMOS传感器的每个像素都有一个将电荷转化为电子信号的放大器。因此,CMOS传感器可以在每个像素基础上进行信号放大,采用这种方法可节省任何无效的传输操作,所以只需少量能量消耗就可以进行快速数据扫描,同时噪音也有所降低。这就是佳能的像素内电荷xx转送技术。

我们通过INTERNET查看了大量由CANON EOS D30所拍摄的照片,发现CMOS的成像效果一点也不比传统CCD差。这种能耗低、制造相对容易的感光芯片如果能在影像的锐利度、动态范围等方面再做进一步的努力,相信CMOS是未来数码相机的发展方向。

四、Foveon X3

数码相机的发展远比想像中的要快的多,而影响期性能的感觉技术也不断的推陈出新。现在数码相机的感光芯片大体分四种,即为CCD、SUPER CCD、CMOS、Foveon X3,其中CCD是现今数码相机采用最多的一种感光芯片,估计占有80%以上,其余的为CMOS、SUPER CCD。

Foveon X3 技术是美国Foveon公司今年二月十一日公布的。如果按大类算的话,它应该归属于CMOS图像感光技术,但它却不同于传统的CMOS。传统的CMOS都是单像素提供单原色的一种感光技术,而X3却是用单像素提供三原色的感光技术。

X3的感光器如果要用什么东西来比喻一下,那就非拿银盐彩色胶片不可了。这种感光器与银盐彩色胶片相似,由三层感光原素垂直叠在一起,据Foveon声称,同等像素的X3图像感光器比传统CCD锐利两倍,并且能提供更丰富的彩色还原度以及避免采用Bayer Pattern传统感光器所特有的色彩干扰。

此外,这种技术由于每个像素都能提供完整的三原色信息,把色彩信号组合成图像文件的过程简单很多,降低了对图像处理的计算要求,并且采用CMOS半导体工艺的X3图像感光器耗电要比传统CCD小。

X3技术的另一个特点是虚拟像素尺寸-VPS(Virtual Pixel Size)。可以理解为把邻近的像素信号组合成一个像素,比如说2x2或者4x4,从而增加信噪比。这个特点可以应用于提高感光度同时保持低噪音。此外使用VPS减低像素还可以加快从感光器提取信号的速度,这对于摄像应用有帮助。

可以说未来数码相机的感光技术用的最多的应为Foveon X3,这是因为它有诸多的优点可以比拼其它感光技术。如耗电量、制造工艺简单、图像效果好等等。虽说短期内它不会很快的被应用到各数码相机上来,但相信随着用户及厂商对相机图象质量的要求越来越高,{zh1}的{wz}终究会为X3所拿走。让我们期待着X3的普及吧,因为它会给我们带来更好的图像质量。

感光器件尺寸

说到CCD的尺寸,其实是说感光器件的面积大小,这里就包括了CCD和CMOS。感光器件的面积越大,也即CCD/CMOS面积越大,捕获的光子越多,感光性能越好,信噪比越低。CCD/CMOS是数码相机用来感光成像的部件,相当于光学传统相机中的胶卷。

CCD上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。

如果分解CCD,你会发现CCD的结构为三层,{dy}层是“微型镜头”,第二层是“分色滤色片”以及第三层“感光层”。

{dy}层“微型镜头”

我们知道,数码相机成像的关键是在于其感光层,为了扩展CCD的采光率,必须扩展单一像素的受光面积。但是提高采光率的办法也容易使画质下降。这一层“微型镜头”就等于在感光层前面加上一副眼镜。因此感光面积不再因为传感器的开口面积而决定,而改由微型镜片的表面积来决定。

第二层是“分色滤色片”

CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYK补色分色法这两种方法各有优缺点。首先,我们先了解一下两种分色法的概念,RGB即三原色分色法,几乎所有人类眼镜可以识别的颜色,都可以通过红、绿和蓝来组成,而RGB三个字母分别就是Red, Green和Blue,这说明RGB分色法是通过这三个通道的颜色调节而成。再说CMYK,这是由四个通道的颜色配合而成,他们分别是青(C)、洋红(M)、黄(Y)、黑(K)。在印刷业中,CMYK更为适用,但其调节出来的颜色不及RGB的多。

原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。因此,大家可以注意,一般采用原色CCD的数码相机,在ISO感光度上多半不会超过400。相对的,补色CCD多了一个Y黄色滤色器,在色彩的分辨上比较仔细,但却牺牲了部分影像的分辨率,而在ISO值上,补色CCD可以容忍较高的感光度,一般都可设定在800以上。

第三层:感光层

CCD的第三层是“感光片”,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。

传统的照相机胶卷尺寸为35mm,35mm为胶卷的宽度(包括齿孔部分),35mm胶卷的感光面积为36 x 24mm。换算到数码相机,对角长度约接近35mm的,CCD/CMOS尺寸越大。在单反数码相机中,很多都拥有接近35mm的CCD/CMOS尺寸,例如尼康德D100,CCD/CMOS尺寸面积达到23.7 x 15.6,比起消费级数码相机要大很多,而佳能的EOS-1Ds的CMOS尺寸为36 x 24mm,达到了35mm的面积,所以成像也相对较好。

现在市面上的消费级数码相机主要有2/3英寸、1/1.8英寸、1/2.7英寸、1/3.2英寸四种。CCD/CMOS尺寸越大,感光面积越大,成像效果越好。1/1.8英寸的300万像素相机效果通常好于1/2.7英寸的400万像素相机(后者的感光面积只有前者的55%)。而相同尺寸的CCD/CMOS像素增加固然是件好事,但这也会导致单个像素的感光面积缩小,有曝光不足的可能。但如果在增加CCD/CMOS像素的同时想维持现有的图像质量,就必须在至少维持单个像素面积不减小的基础上增大CCD/CMOS的总面积。目前更大尺寸CCD/CMOS加工制造比较困难,成本也非常高。因此,CCD/CMOS尺寸较大的数码相机,价格也较高。感光器件的大小直接影响数码相机的体积重量。超薄、超轻的数码相机一般CCD/CMOS尺寸也小,而越专业的数码相机,CCD/CMOS尺寸也越大。

CCD(CMOS)的真实尺寸?

在数码相机性能规格表中用英寸表示并不是CCD的真实尺寸,但可以使用一个简单而实用的方法求得CCD的真实尺寸。镜头的真实焦距与相当(等效)焦距在数码相机或使用说明书上一般都会列出,而相当于35mm照相机的焦距与真实焦距之比,即为35mm照相机的画幅对角线尺寸与CCD的实际对角线长度比,由此可以方便计算出CCD的真实尺寸。

举例说明,松下LX2(有效像素1020万)轻便数码相机使用1/1.65英寸CCD,镜头的相当焦距为28-112mm,真实焦距为6.3-25.2mm,两者的比例4.44,35mm照相机的画幅尺寸为24x36mm,对角线长43.2mm,43.2/4.44=9.72mm,这就是1/1.65英寸CCD有效对角线长度,换算成画幅横纵比4/3,可求得真实尺寸为7.38x5.54mm。松下LX2相机CCD有效感光成像面积仅为全幅尺寸的二十分之一,为APS—C画幅尺寸的九分之一。

CCD/CMOS尺寸一览表

APS-C、APS-P、全画幅

数码单反相机的CCD很多都是“APS-C”画幅。那么,究竟APS-C究竟是什么意思?

还得先从十九世纪二十年代的诞生135胶卷谈起。那时候德国研制出拍摄35mm(36-1mm×24mm)电影胶片的Leika照相机后,35毫米胶卷又叫“莱卡卷”,后来世界各厂生产用于拍摄35毫米胶片的照相机越来越多,“莱卡卷”这个名称已不能适应了,于是就按胶卷的宽度改为“35毫米胶片”直到五十年代之后,为了区分35毫米电影胶片和照相机用的35毫米散装胶卷,在胶卷盒上印有135的代号。后来大家就公认把35mm胶卷称为135胶卷,把用135胶卷的相机称为135相机。

1996年由FujiFilm、Kodak、Canon、Minolta、Nikon五大公司联合开发的APS(Advance Photo System)胶片系统问世。APS开发商在原135规格的基础上进行了彻底改进,包括相机、感光材料、冲印设备以及相关的配套产品上都全面创新,大幅度缩小了胶片尺寸,使用了新的智能暗盒设计,融入了当代的数字技术,成为了能记录光学信息、数码信息的智能型胶卷。

APS定位于业余消费市场,共设计了三种底片画幅(H、C、P):

H型是满画幅(30.3×16.6mm),长宽比为16:9;

C型是在满画幅的左右两头各挡去一端,长宽比为3:2(24.9×16.6mm),于135底片同比例;

P型是满幅的上下两边各挡去一条,使画面长宽比例为3:1(30.3×10.1mm),被称为全景模式。

APS感光胶片与传统感光胶片{zd0}的区别在于胶片上不仅涂有感光乳剂,还涂覆有一层透明的磁性介质,它除了具有传统胶片的所有功能外,还具有数码书写能力,利用胶片齿孔边和另一边的条形导轨面积,在拍摄过程中,可以随时将拍摄中的有关数据记录在胶片上,如:焦距、光圈、速度、色温、日期。有的APS相机还储存有十几种语言,100多种赠语、贺词或标题,可以通过机背上的按钮选择所需和对照片的制作要求等,并且将信息记录在胶片上,这些信息还可以修改。在冲洗时还可以印出一张“缩略图索引”的目录照片,在当时是很新颖超前的设计。

为了便于观看APS胶片,APS系统还配套设计有“胶片图像播放仪”,把拍摄好的胶片放入设备并与电视连接,就可以在电视上观赏,同时还能配有音乐,可以连续播放,图像可以局部放大,还可以调节图像的色彩、亮度等,如同看电影一样,增添了摄影的娱乐性。

APS问世以来前后有50多家生产厂商加盟。各品牌的APS相机在性能上大同小异。外型上看可分为两大类:一类是胶片生产商生产的相机,都为袖珍型。这类APS机体积小巧、功能齐全、操作简单、便于携带。例如FujiFilm的Fotonex1000ix;另一类为相机生产商生产的相机,Minolta(VECTISS)、Canon、Nikon都有开发。{zd0}的特点是除特别为APS设计的Lens外,可以使用原135系统的所有镜头。如Canon的EOS1X,Nikon的PRONEA 600I等等。

但是,APS夹在了传统胶片摄影系统和当今数码摄影系统之间,是介于两者之间的过渡产品。不难看出,上述优点,如记录拍摄数据、存入档案资料、编辑数码相册、电脑投影播放等等,在当今的数码相机中全能实现,而且有了更大的扩展。所以,在数码相机技术的高速发展冲击下,APS系统未能得到展开应用就“出师未捷身先死”,早早就已经“夭折”。

由于在现今数码单反相机中,大都是采用了小于135规格的CCD或CMOS感光器件,除了奥林帕斯的4/3系统和佳能全画幅以外,现存几乎全部都是和APS-C型胶片一样的大小:长宽比为3:2,边长近似为24.9×16.6mm,为了便于形容,人们就把类似这种大小的感光器件称之为“APS-C规格”。

佳能单反相机传感器尺寸差别

等效于35mm相机焦距

目前数码相机的成像器件面积都小于普通的135胶卷(即35mm胶卷相机)的面积,所以其镜头焦距很短,说到其镜头焦距时常不会涉及到其实际的物理焦距,而说与其视角相当的35mm(国内的135)相机的镜头焦距,也就是说,其“镜头的视角相当于XX”。

常见CCD尺寸

35mm胶片的尺寸是36 x 24mm,也就是我们平时在照相机馆中看到的最为普遍的那种胶卷,由于35mm焦长的广泛使用,因此它成为了一种标尺,就像我们用米或者公斤来度衡长度和重量一样,35mm成为我们判断镜头视野度的一种标注。例如,28mm 焦长可以实现广角拍摄,35mm焦长就是标准视角,50mm镜头是最接近人眼自然视角的,而380mm镜头就属于超望远视角,可捕捉远方的景物。

常见传感器尺寸与35mm胶片的关系

根据相机的光学原理,焦长越小,视角就越大,焦长越大,视角就越小,这对于数码相机和传统相机而言都是不变的道理。现在相机的焦长都是由mm(毫米)来标注的,而无论相机的类型是什么:35mm传统相机,、APS或者数码相机。镜头的焦长代表的是镜头和对焦面之间的距离,对焦面可以是胶片或者传感器。更准确地定义应该是“焦长等于对焦点和镜头光学中心之间的距离”。

现在通常的数码相机的焦长都非常的短,这是因为绝大多数数码相机的传感器都很小,往往对角线长度还不到一英时,为了在这么小的传感器上能够成像感光,因此镜头和对焦面之间的距离就很小,这就是为什么数码相机镜头的焦长数值都很小的缘故。

不过在数码相机上采用35mm等值来表现焦长,并非是人们不习惯数码相机上的焦长过短,而是因为每款数码相机上标注的实际焦长往往获得的视野不一样,比如都是6-18mm焦长范围,但是不同的数码相机上这个焦长所表现出来的效果往往是不一样的。这是由于数码相机采用的传感器各有所别。

我们来看看3种不同CCD的表现效果:

·采用210万CCD的尺寸是1/2"

·采用330万像素的CCD尺寸是1/1.8

·采用400万像素CCD的尺寸是2/3

这三款CCD不仅对角线尺寸不同而且所含有的像素值也不同。这里我们需要注意的一个问题是,组成画面的像素和焦长之间是没有必然联系的。很多具有不同像素值传感器的数码相机有很多相同的地方,比如具有相同的镜头和机身设计等等,如果这些传感器具有相同的物理尺寸,那么它们的35mm等值焦长就肯定是相同的。反过来说,这些数码相机上为CCD配套的镜头都具有相同的焦长,比如8mm,但是CCD的尺寸不一样,那么这些镜头换算成35mm等值的焦长就肯定不同。它们中间肯定会出现大于标准视野或者小于标准视野的情况。

因此采用标准的35mm等值焦长来标准就是一个简单可行的方法,不管采用的CCD尺寸如何,这样各款数码相机之间才有了可比性,这就是35mm等值焦长来历。

景深

大家都知道一般相机要对焦后才能拍摄,理论上相片中只有被准确对焦的部分(焦点)清晰,焦点前及焦点后的景物会因在焦点以外而显得模糊。不过,基于镜头、拍摄距离等因素,在焦点前、后仍然会有一段距离的景物能够被清晰显示,不致于落入模糊地带,这个清晰的范围便称为景深。

所谓的景深,就是在拍摄的场景中,被摄主体呈现出清晰的范围。景深可能很长,也可能很短、很浅,我们可以根据需求调整摄影的模式来控制景深的长短。

一般会影响到景深长短的原因,有下面三种:

1.光圈越大、景深越浅,光圈越小、景深越长

在拍摄距离不变的拍摄情况下,使用大光圈来拍摄时,因为景深变浅,被摄体的前后景物会变得比较模糊。而使用小光圈时,被摄体前后景物清晰的距离就会变长。

左边大光圈、右边是小光圈,注意后背景清晰程度的差异

2.镜头的焦距越长、景深越浅,镜头的焦距越短、景深越长

在光圈、快门都不变时,拍摄同一个场景,使用长镜头会让景深变浅。而使用广角镜时,景深就会变长。

左边使用长镜头,右边使用广角镜头,可以看出景深的差异

3.距离拍摄体越近时、景深越浅,距离拍摄体越远时、景深越长

在光圈、快门、镜头焦距都不变的情况下,拍摄同一场景,离被摄体越近时,景深就会越浅。离被摄体越远时,景深就会越长。

相同的焦段,因为拍摄距离不同,景深就会有不同的变化

由上面三点我们可以发现景深的长短,主要是由光圈、镜头焦距及拍摄距离来控制的,因此在需要控制景深的拍摄场合中,我们就可以调整这些要素来拍出合适的照片。

在早期的镜头环上面都有景深的速查表,可以从上面读出景深的范围和长度,但是现在的自动对焦镜头大都舍去了这个设计,要不就是在镜头上附个非常简陋的景深表,实用功能不大。

对于业余拍摄者来说,会去读景深表的人其实是相当少的,大多数人都用经验法则去判断景深长度;另一个方法是利用相机的「景深预视」功能,按下景深预视钮后,从观景窗判断景深长短,这是最快也最直接的方法。不过它的缺点是当使用小光圈拍摄时,因为进光量变小,而使得按下景深预视钮后,从观景窗看出去会变得比较暗。

就一般的拍摄情况来说,在拍摄风景的场合,我们常利用长景深来表现整个清晰的场景,所以使用缩光圈的方式来拍摄。但因为光圈缩小进光量也跟着变小,使得快门速度变低,就需要使用脚架来稳定机身,这也是风景摄影常会用到脚架的原因之一。

当我们在拍摄人像时,会利用浅景深的方式来模糊被摄体前后的景物,藉以凸显主题的强度,同样的拍摄手法也可以用在其它的场合上。要凸显主题,浅景深是一个很方便的手法,所以一般在购买器材时,会依据需求选购一两支大光圈的镜头,除了能在低光度下拍摄外,能灵活运用浅景深也是一个重要原因。



郑重声明:资讯 【相1_灵_百度空间】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——