内存基础知识_冰冻之夏_百度空间
   一.    简介

        在计算机的组成结构中,有一个很重要的部分,就是存储器。存储器是用来存储程序和数据的部件,对于计算机来说,有了存储器,才有记忆功能,才能保证正常工作。存储器的种类很多,按其用途可分为主存储器和辅助存储器,主存储器又称内存储器(简称内存,港台称之为记忆体)。
      内存是电脑中的主要部件,它是相对于外存而言的。我们平常使用的程序,如Windows操作系统、打字软件、游戏软件等,一般都是安装在硬盘等外存上的,但xx是不能使用其功能的,必须把它们调入内存中运行,才能真正使用其功能,我们平时输入一段文字,或玩一个游戏,其实都是在内存中进行的。就好比在一个书房里,存放书籍的书架和书柜相当于电脑的外存,而我们工作的办公桌就是内存。通常我们把要{yj}保存的、大量的数据存储在外存上,而把一些临时的或少量的数据和程序放在内存上,当然内存的好坏会直接影响电脑的运行速度。

二.    概述

      内存就是存储程序以及数据的地方,比如当我们在使用Word处理文稿时,当你在键盘上敲入字符时,它就被存入内存中,当你选择存盘时,内存中的数据才会被存入硬(磁)盘。在进一步理解它之前,还应认识一下它的物理概念。        
      内存一般采用半导体存储单元,包括随机存储器(RAM),只读存储器(ROM),以及高速缓存(CACHE)。只不过因为RAM是其中最重要的存储器.

      ●只读存储器(ROM)
      ROM表示只读存储器(Read Only Memory),在制造ROM的时候,信息(数据或程序)就被存入并{yj}保存。这些信息只能读出,一般不能写入,即使机器掉电,这些数据也不会丢失。 ROM一般用于存放计算机的基本程序和数据,如BIOS ROM。其物理外形一般是双列直插式(DIP)的集成块。

      ●随机存储器(RAM)
      随机存储器(Random Access Memory)表示既可以从中读取数据,也可以写入数据。当机器电源关闭时,存于其中的数据就会丢失。我们通常购买或升级的内存条就是用作电脑的内存,内存条(SIMM)就是将RAM集成块集中在一起的一小块电路板,它插在计算机中的内存插槽上,以减少RAM集成块占用的空间。目前市场上常见的内存条有 1G/条,2G/条,4G/条等。

      ●高速缓冲存储器(Cache)
      Cache也是我们经常遇到的概念,也就是平常看到的一级缓存(L1 Cache)、二级缓存(L2 Cache)、三级缓存(L3 Cache)这些数据,它位于CPU与内存之间,是一个读写速度比内存更快的存储器。当CPU向内存中写入或读出数据时,这个数据也被存储进高速缓冲存储器中。当CPU再次需要这些数据时,CPU就从高速缓冲存储器读取数据,而不是访问较慢的内存,当然,如需要的数据在Cache中没有,CPU会再去读取内存中的数据。

      ●物理存储器和地址空间
      物理存储器和存储地址空间是两个不同的概念。但是由于这两者有十分密切的关系,而且两者都用B、KB、MB、GB来度量其容量大小,因此容易产生认识上的混淆。初学者弄清这两个不同的概念,有助于进一步认识内存储器和用好内存储器。
      物理存储器是指实际存在的具体存储器芯片。如主板上装插的内存条和装载有系统的BIOS的ROM芯片,显示卡上的显示RAM芯片和装载显示BIOS的ROM芯片,以及各种适配卡上的RAM芯片和ROM芯片都是物理存储器。

      存储地址空间是指对存储器编码(编码地址)的范围。所谓编码就是对每一个物理存储单元(一个字节)分配一个号码,通常叫作“编址”。分配一个号码给一个存储单元的目的是为了便于找到它,完成数据的读写,这就是所谓的“寻址”(所以,有人也把地址空间称为寻址空间)。
      地址空间的大小和物理存储器的大小并不一定相等。举个例子来说明这个问题:某层楼共有17个房间,其编号为801~817。这17个房间是物理的,而其地址空间采用了三位编码,其范围是800~899共100个地址,可见地址空间是大于实际房间数量的。
      对于386以上档次的微机,其地址总线为32位,因此地址空间可达2的32次方,即 4GB。(虽然如此,但是我们一般使用的一些操作系统例如windows xp、却最多只能识别或者使用3.25G的内存,64位的操作系统vista虽然能识别4G的内存,却也最多只能使用3.25G的内存。目前只有Windows 7操作系统具有“ 64bit Only”的功能——即能够识别并且使用4GB的内存)
      内存包括:常规内存、保留内存、上位内存、xx内存、扩充内存和扩展内存等不同内存类型。

三 .    内存频率

        内存主频和CPU主频一样,习惯上被用来表示内存的速度,它代表着该内存所能达到的{zg}工作频率。内存主频是以MHz(兆赫)为单位来计量的。内存主频越高在一定程度上代表着内存所能达到的速度越快。内存主频决定着该内存{zg}能在什么样的频率正常工作。目前较为主流的内存频率是800MHz的DDR2内存,以及一些内存频率更高的DDR3内存。
      大家知道,计算机系统的时钟速度是以频率来衡量的。晶体振荡器控制着时钟速度,在石英晶片上加上电压,其就以正弦波的形式震动起来,这一震动可以通过晶片的形变和大小记录下来。晶体的震动以正弦调和变化的电流的形式表现出来,这一变化的电流就是时钟信号。而内存本身并不具备晶体振荡器,因此内存工作时的时钟信号是由主板芯片组的北桥或直接由主板的时钟发生器提供的,也就是说内存无法决定自身的工作频率,其实际工作频率是由主板来决定的。
      DDR内存和DDR2内存的频率可以用工作频率和等效频率两种方式表示,工作频率是内存颗粒实际的工作频率,但是由于DDR内存可以在脉冲的上升和下降沿都传输数据,因此传输数据的等效频率是工作频率的两倍;而DDR2内存每个时钟能够以四倍于工作频率的速度读/写数据,因此传输数据的等效频率是工作频率的四倍。例如DDR 200/266/333/400的工作频率分别是100/133/166/200MHz,而等效频率分别是200/266/333 /400MHz;DDR2 400/533/667/800的工作频率分别是100/133/166/200MHz,而等效频率分别是400/533/667/800MHz。

四.    DDR2与DDR3的区别

        DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit预读升级为8bit预读。DDR3目前{zg}能够达到2000Mhz的速度,尽管目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,但是DDR3内存模组仍会从1066Mhz起跳。

      一、DDR3在DDR2基础上采用的新型设计:
      1.8bit预取设计,而DDR2为4bit预取,这样DRAM内核的频率只有接口频率的1/8,DDR3-800的核心工作频率只有100MHz。
      2.采用点对点的拓朴架构,以减轻地址/命令与控制总线的负担。
      3.采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。

        二、DDR3与DDR2几个主要的不同之处 :
      1.突发长度(Burst Length,BL)
      由于DDR3的预取为8bit,所以突发传输周期(Burst Length,BL)也固定为8,而对于DDR2和早期的DDR架构系统,BL=4也是常用的,DDR3为此增加了一个4bit Burst Chop(突发突变)模式,即由一个BL=4的读取操作加上一个BL=4的写入操作来合成一个BL=8的数据突发传输,届时可通过A12地址线来控制这一突发模式。而且需要指出的是,任何突发中断操作都将在DDR3内存中予以禁止,且不予支持,取而代之的是更灵活的突发传输控制(如4bit顺序突发)。

      2.寻址时序(Timing)
      就像DDR2从DDR转变而来后延迟周期数增加一样,DDR3的CL周期也将比DDR2有所提高。DDR2的CL范围一般在2~5之间,而DDR3则在5~11之间,且附加延迟(AL)的设计也有所变化。DDR2时AL的范围是0~4,而DDR3 时AL有三种选项,分别是0、CL-1和CL-2。另外,DDR3还新增加了一个时序参数——写入延迟(CWD),这一参数将根据具体的工作频率而定。

      3.DDR3新增的重置(Reset)功能
      重置是DDR3新增的一项重要功能,并为此专门准备了一个引脚。DRAM业界很早以前就要求增加这一功能,如今终于在DDR3上实现了。这一引脚将使DDR3的初始化处理变得简单。当Reset命令有效时,DDR3内存将停止所有操作,并切换至最少量活动状态,以节约电力。
      在Reset期间,DDR3内存将关闭内在的大部分功能,所有数据接收与发送器都将关闭,所有内部的程序装置将复位,DLL(延迟锁相环路)与时钟电路将停止工作,而且不理睬数据总线上的任何动静。这样一来,将使DDR3达到最节省电力的目的。

      4.DDR3新增ZQ校准功能
      ZQ也是一个新增的脚,在这个引脚上接有一个240欧姆的低公差参考电阻。这个引脚通过一个命令集,通过片上校准引擎(On-Die Calibration Engine,ODCE)来自动校验数据输出驱动器导通电阻与ODT的终结电阻值。当系统发出这一指令后,将用相应的时钟周期(在加电与初始化之后用 512个时钟周期,在退出自刷新操作后用256个时钟周期、在其他情况下用64个时钟周期)对导通电阻和ODT电阻进行重新校准。

      5.参考电压分成两个
      在DDR3系统中,对于内存系统工作非常重要的参考电压信号VREF将分为两个信号,即为命令与地址信号服务的VREFCA和为数据总线服务的VREFDQ,这将有效地提高系统数据总线的信噪等级。

      6.点对点连接(Point-to-Point,P2P)
      这是为了提高系统性能而进行的重要改动,也是DDR3与DDR2的一个关键区别。在DDR3系统中,一个内存控制器只与一个内存通道打交道,而且这个内存通道只能有一个插槽,因此,内存控制器与DDR3内存模组之间是点对点(P2P)的关系(单物理Bank的模组),或者是点对双点(Point-to-two-Point,P22P)的关系(双物理Bank的模组),从而大大地减轻了地址/命令 /控制与数据总线的负载。而在内存模组方面,与DDR2的类别相类似,也有标准DIMM(台式PC)、SO-DIMM/Micro-DIMM(笔记本电脑)、FB-DIMM2(服务器)之分,其中第二代FB-DIMM将采用规格更高的AMB2(高级内存缓冲器)。
      面向64位构架的DDR3显然在频率和速度上拥有更多的优势,此外,由于DDR3所采用的根据温度自动自刷新、局部自刷新等其它一些功能,在功耗方面DDR3也要出色得多,因此,它可能首先受到移动设备的欢迎,就像{zx0}迎接DDR2内存的不是台式机而是服务器一样。在CPU外频提升最迅速的PC台式机领域,DDR3未来也是一片光明


郑重声明:资讯 【内存基础知识_冰冻之夏_百度空间】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——