扬声器知识_鹭过长空_百度空间

JBL扬声器
   扬声器(简称音箱)是音响系统的喉舌,直接影响还音的音质,是音响系统最关健的部份。它如像歌星的嗓子,有了好的歌喉,才能唱出优美动听的歌曲。因此,如何选择好声音宏亮、音质优美、失真极微、工作可靠的扬声器是广大用户共同关心和追求的目标。JBL作为专业扬声器生产商的先驱者,我们有责任向大家介绍。
   ※一)如何选择扬声器?
   扬声器实际上是一种把可听范围内的音频电功率信号通过换能器(扬声器单元),把它转变为具有足够声压级的可听声音。为能正确选择好扬声器,必须首先了解声音信号的属性,然后要求扬声器能“原汁原味”地把音频电信号还原成逼真自然的声音。
   人声和各种乐声是一种随机信号,其波形十分复杂。可听声音的频率范围一般可达20HZ-20KHZ;其中语言的频谱范围约在150HZ-4KHZ左右;而各种音乐的频谱范围可达40HZ-18KHZ左右。其平均频谱的能量分布为:低音和中低音部分{zd0},中高音部分次之,高音部分最小(约为中、低音部分能量的10/1);人声的能量主要集中在200HZ-35KHZ频率范围。这些可听随机信号幅度的峰值比它的平均值均大10-15DB(甚至更高一点)。因此扬声器要能正确地重放出这些随机信号,保证重放的音质优美动听,扬声器必须具有宽广的频率响应特性,足够的声压级和大的信号动态范围。我们希望能用相对较小的信号功率输入获得足够大的声压级,即要求扬声器具有高效率的电功率转换成声的灵敏度。此外我们还要求扬声器系统在输入信号适量过载的情况下,不会受到损坏,即要有较高的可靠性。还有一点是用户希望能买到“物美价廉”的好产品,即性能价格比高的产品,{zh1}还要考虑产品的配套方式,外形结构和吊装方法等条件。
   ※二)扬声器系统主要技术特性的应用
   扬声器系统有许多与音色效果和使用场合直接有关的技术特性,为了用好用活这些技术特性,用户必须对它们有所了解。
   1)二路(二分频)和三路(三分频)扬声器系统
   音频信号的频谱范围很宽,把20HZ-20KHZ的信号要用一种扬声器单元是无法满足整段频响的;因为一般的12寸以上大口径扬声器单元,低音特性很好,失真不大,但超过1.5HZ的信号,它的表现就很差了;1-2寸的高音扬声器单元(高音压缩驱动器)重放3KHZ以上的信号性能很好,但无法重放中音和低音信号。于是就有了由各种频响特性单元组成的扬声器系统,由低音(含中低音)和高音(含中高音)两种单元组成的称为二路扬声器系统,由低音、中音和高音三种单元组成的称为三路系统。
   二路扬声器系统结构简单,造价相对较低,为了解决缺少这段中音频率.于是有些厂家用了一种折衷的方法,即在分频网上把低音单元的频响特性向上移动,把高音单元的频率特性向下移动。另外一个问题是,分频交叉点频率只能设定在500HZ-2KHZ之间,而此区域正是人声和乐声频谱的重要部分。因此在听觉上会留下“空洞”感和可闻的失真(当然分频器的斜率特性大些,例如,18DB/倍频程,此缺陷可得到一些补偿)。亦因为如此,二路扬声器对喇叭单元的要求相对较高,xxx元的性能不佳,整个扬声器系统的声音就不够平滑,或有严重的相位失真。
   三路扬声器系统各单元的特性可不作折衷,充分发挥它们各自的长处,两个分频交叉点可选在中音人声和乐声频谱重要部份的上、下边缘处,对音质没有任何影响,故三路扬声器系统小了声音的失真,提高了声音的清晰度,改善了低音和高音间交叉频段的性能,增加了扬声器系统的功率处理能力。因此是文艺演出、音乐厅和歌剧院扩声系统的{zj0}选择。
   2)灵敏度和{zd0}声压级(SPLMAX)
   扬声器单元是一种电信号与声音之间的换能器,要求它能以相对较小的输入功率换成很宏亮的声音,这就求扬声器有较高的声压灵敏度。「灵敏度」实质是一种「转换效率」的体现。各类扬声器系统由于设计技术、选用的材料和生产工艺等多方面的差异,灵敏度的差异也很大。灵敏度是指输入扬声器单元1瓦的电功率,在扬声器轴线方向离开1米远的地方测得的声压级大小。如果两种扬声器的灵敏度相差3DB,要达到同样大的声压级输出,需要增加电输入功率一倍,因此灵敏度较高的扬声器能发出较大的声音。
   扬声器系统的输入功率能力一般都远远大于1瓦(一般都在100瓦-2000瓦之间),因此实际使用时都可输入这个{zd0}允许的电功率。以额定{zd0}功率,输入扬声器,在扬声器轴向1米处生产的声压级称为{zd0}声压级SPLMAX。例,灵敏度=100DB,1W/1M的扬声器,若具{zd0}功率承受能力为1000W,则SPLMAX=100DB+30DB=130DB,1M。另外大家关心的间题是两个相同声压级的扬声器箱放在一起的合成声压级到底增加多少?
   ---------“回答是:在室内混响声场两倍半径以外的地方约增加3DB。”
   这里就引出了一个性能/价格比的经济核算问题。例如,一个SPL1=90DB的音箱,单价为5000元,另一种音箱的SPL2=99DB,单价为2万元,如果系统要求达到99DB的声压级,那么声压级低的音箱要用8个(8×5000=4万元),另一种高声压级的音箱只要用1个(2万元)就足够了,此外8个音箱还需用8倍的功率推动,更增加了投资成本。
  3)失真和音质
   非常遗憾,音箱工厂都没有标称他们产品的失真率,其实它是一个非常重要的技术参数。音质是一个比较抽象的评价,亦没有可能在文件上标称,只能采取主观的听音比试。通常,灵敏度和音质是有矛盾的,生产商需要在两者中作适当的平衡。一般来说,中低价的产品,均以灵敏度作主导,追求性能价格比。而高价位产品偏重音质。而{zg}层次者是两者兼备。
   4)「个性」与「共性」
   在此又再引伸出另一个相对抽象和主观的性能评价。扩声用的音响,有别于家中的HI-FI音响器材,必须兼容性非常高,因为每个场地都可能演出不同类型的节目从歌剧到摇滚音乐会,亦可能只是以语言信号为主的报告会...故其音响系统必须要兼容不同的节目源,做到「平均性」的优异,即不能偏重于某一个用途。而家里的HI-FI音响器材,只需要照顾一个人或一小撮人的口味,其产品的「个性」是容许存在。但作为专业扩声系统器材,则这种「个性」将会变成「局限性」或「缺陷」。专业扩声器材需要为一大群公众服务,节目内容经常变换,「共性」是基本要求,兼容性要强,不同性质的节目都要有「平均」的表现。除此之外,专业扩声器材必须是无“无渲染”,“不夸张”,“忠实”地将音源还原。这就是「共性」或「共用性」。
   5)扬声器系统的指向特性
   扬声器发出的声音通常在低频段(低于200HZ)的声音是无方向性的,在各方向均匀传播。但在高频段时,声音的传播呈现较强的方向性,这个指向特性(各类音箱均不相崐同)正是我们在系统设计中要加以应用的。优良的恒定指向特性可在现场布置时把声波的能量集中到观众区,避开声波的强烈反射面和声场互相干扰。试举一个比较容易相差明白的例子,市面上的手电筒。一支普通的手电筒与一支有聚光功能的手电筒,价格可以相差数拾倍。一般的手电筒就算其功率与聚光手电筒相同,但光线无法投射很远,而且无法控制投射区域。音箱的高音部分与手电筒的光线相当类似。若只需要有声音,什么档次的音箱都能办得到,就等于任何一支普通手电筒也能照明一样了。但作为大型工程,必须有效地控制声场分布及考虑可投射的距离。指向性的优劣,足以影响工程的成败,必须选择有优良指向性的音箱。扬声器的指向特性使偏离轴向的声压级随偏角的增大而压级逐渐减小;同时声压级又随声波传播距离的增加按距离的平方成反比而衰减,在距扬声器远近和方位不同的听众区,若将这两种衰减选择得当,就可使两种衰减互相补偿,从而使声场更为均匀。大型工程需要覆盖相对比较阔的区域,单只音箱通常不足以应付,需要将多只音箱拼合成音箱群(阵列)。而在阵列扬声器系统中,恒指向特性可使音箱之间的中、高频段的声波在音箱间不产生干扰。用具有上述恒指向特性的一对扬声器组成八字型摆放,可以覆盖单个音箱的一倍。否则,声音在音箱前方已经互相干扰,严重影响声场的均匀度和声音的清晰度。
   6)扬声器系统的功率处理能力
   扬声器系统的功率处理能力(或称扬声器的额定功率)是一项重要技术参数,它代表扬声器承受长期连续安全工作的功率输入能力,了解扬声器的功率处理能力,首先必须懂得扬声器驱动器是如何损坏的,驱动器的损坏模式有两种:一种是音圈过热损坏(音圈烧毁,过热变型,圈间击穿等),另一种是驱动器的振膜位移量超过极限值,使扬声器的锥型振膜和/或其周围的弹性部件损坏,通常发生在含有很多大振幅的低频信号。声音信号不是一种纯正弦波信号,而是一种随机的,这些随机信号可用三个参数来表式:有效值(RMS)又称均方根值,是以信号峰值等幅的正弦信号的一种测量结果,接近于平均值,基本上代表信号的发热能量。
   峰值(PEAK)是信号达到的{zd0}电平,对于正弦波来说,峰值电平大于有效值电平3DB,对于音乐信号来说,峰值电平超过有效值可达10-15DB,在评定一种扬声器的位移能力时,峰值是重要的。峰值因子,用来说明峰值电平与有效值电平的比率,对于按AES2-1984的粉红色噪声源来说,峰值因子为6DB,即峰值电压是有效值电压的4倍。扬声器的功率处理能力是按(AES2-1984)处理后的粉红色噪声信号连续加2小时工作后,其电性能和机械性能的{yj}性变化不大于10%的情况下测得的技术参数。
   7)加载(受热)后的声压级下降(又称功率压缩)
   所有产品说明书上标称功率都是各厂家自定的,是音箱在厂方选定的测试信号和条件下的{zj0}值。当音箱进入工作状态(譬如等于或大于满功率20秒之后),音圈和磁体受热温升后,由于它们性能下降改变了受热前单元的原有特性,这时,实际的声压输出就会减少。常规音箱,如音圈温升60℃-80℃,常见额定声压级下降3DB为容限,如音圈散热优异,而温达100℃以上,实际的声压下降可达6至8DB,这是相当惊人的下降。如前文题及,增加一倍的音箱只提升声压级3DB,若音箱声压级下降达6DB,要弥补这么大的声压级下降,必须由原来的一只音箱增加至四只。非常遗憾,音响工业界没有标称这种声压级下降的习惯,用户只能自行比试各种品牌择优选用。若要改善这种声压级的下降,必须更好的改善扬声器单元的散热设计。
   8)扬声器单元的阻抗
   扬声器单元的阻抗包含,电感量,电容量和电阻值。电感和电容是随频率而变化的。虽然在扬声器系统中标称一个阻抗,例如8欧姆,4欧姆,但这个数值会跟随频率变化而改变。假若阻抗变化太大,将会影响整个音响系统的稳定性。JBL{zx1}的DCD双线圈差驱动设计是将阻抗变为「纯电阻」性,不受频率变化而影响,让整个音响系统稳定工作。
   ※三)如何提高扬声器系统的可靠性
   日常生活中,即使是在功放和扬声器系统的功率匹配相当的情况下也会发生扬声器单元受损的事件。其原因有:
   1.操作不当,功放输出功率过大
   2.演出达到高潮时,场内气氛热烈,需要提升声压,在加大信号时,话筒输入信号过大,引起功放过载削波,失真波形产生大量谐波,损坏高音单元。
   3.话筒产生强烈声反馈啸叫,功放强烈过载,损坏扬声器系统。为此,现代新型扬声器系统采取了多种保护性措施,这些措施可分为两类:
   (1)提高扬声器单元的散热力,使其在过载时不发生过热损坏。
   (2)在扬声器箱中安装限幅保护装置,当驱动功率和峰值电平超过扬声器的额定值时,限幅器把超过的功率电平用非线性电阻(灯泡)对音圈进行阻止。这些措施,提高了扬声器抗过载的能力,但也影响了声音的动态范围,使音域不够宽广,音色感觉模糊和暗淡。因此,{zh0}的办法还是在功放上采取措施,使它的输出不产生削波和功率过载等问题。

****

1、引言
   目前音箱是按其构造分类的,例如闭箱、倒相箱、空纸盆箱(无源辐射箱)、迷宫箱、二级倒相箱、前号筒箱、后号筒箱、箱式低音炮、管式低音炮、加载式、传输线式、管道式等等约有10余种形式,而每一种音箱都不得有各自的原理解释,绝大多数解释的不xx不全面。
   人们知道,设置音箱的目的有两个,一是因为频率在1~200Hz以下的低音无方向性,振膜前后方的声波呈反相状态,会引起低音声短路,致使低频声压大跌,因此需用音箱隔离前后声波;二是单个扬声器的频响范围有限,为拓宽频响,需用2只以上扬声器分别工作在不同的频段,以达到对高低音向两端延伸的要求。防止声短路问题,但背辐射声波的能量没有利用起来。为改善这一弱点,人们又发明了10余种形式的音箱,在防止低音声短路的前提下,充分利用背辐射声波的能量,提高电声轮换效率,拓宽低频响应。这10余种音箱都有各自的工作原理解释,有些解释较清楚,有些解释较笼统,甚至还有一些片面的误解。这种设计制作各种音箱带来了难度,为此,笔者提出一种全新的通用的音箱原理——消音与半消音原理。在充分理解的基础上,就能举一反三,设计制作好任意结构的音箱。
   2、音箱的分类
   传统的分类是按箱体的结构分类,而根据消音与半消音原理分类,是按背辐射声波的处理方式分类,这就将所有的动圈式扬声器归纳为一个共同的原理——消音与半消音原理。并分为两大类箱形,即消音箱和半消音箱。
   2.1消音式音箱
   消音式音箱就是对箱内声波作消音处理,闭箱就是典型的消音箱,此外,大障板箱、背开口箱、对称驱动箱、前号筒箱等均为消音式音箱。通过消音二字,对其工作原理就能大体略知,消音的好坏,直接关系到放音质量的好坏。这里可把背辐射声波分为两个频段,分别对待。一段是低音扬声器装箱后听谐振频段,另一段是低音单元除去谐振频段后的全部频段即非谐振频段。
   对谐振频段来说,未加入吸声材料时,声波能量被吸收的较少,能量被转移消化的较少,因此谐振能量较大,低音单元在谐振频率处的谐振未受到太多的抑制,振幅依然很大,造成很强的自感电势,自感电势与信号电势共同参与电声双向反应(笔者在另一文章提出了电声双向反应论),对谐振频率处的声波造成{zd0}的波形失真,这是危害之一。危害之二是当电信号停止时,惯性导致大振幅具有较强的余振,造成声波拖尾变长,使低频变得拖泥带水,产生隆隆声。这个隆隆声就是余振拖尾造成的,是电信号中没有的新声波。危害之三是强烈的振幅产生较高的声压,该声波失真又大,又会使频响曲线的低端凸起,破坏了声压的平衡。对音箱来说,减少这3点危害的有效方法就是增加吸声材料。但吸声材料的加入量并非越多越好,过多的吸声材料,虽然减少了前两个危害,但又造成低音力度不足。这就需要折衷处理,如何掌握吸声材料的加入量,以什么为标准呢?应以反映谐振峰阻尼特性的Q值为标准,将音箱Q值调整在0.6~0.7之间为好。当Q值<0.6较多时,阻尼过量,低频清晰无隆隆声。如果Q值>0.7较多时,阻尼不足,低频声压虽上升,但是瞬态特性变差,低频伴有隆隆声,声波不清晰。
   影响音箱Q值的因素有两点,一是单元装箱前的Q值,由扬声器厂家设计确定,用户一般只能挑选不能调整。二是箱内吸声材料的品种和数量可选。这两个因素是互相影响的,一个方面的不足,可用另一个方面给予补偿。但这种补偿是有限度的,例如一个自身阻尼不足的低音单元,品质因数Q值过大时,是无法通过增加吸声材料来使其工作在{zj0}状态的,只能使其转好一点而已。
   扬声器的谐振频率装箱后会向上漂移,漂移量的大小,受箱容积和吸声材料的影响。箱容积越大,吸声材料越多,向上漂移量越小,反之相反。所以消音箱谐振峰的频率,由单元、箱容积及吸声材料共同决定。单元谐振频率低,箱容积大,吸声材料多,谐振频率就低。值得注意的是单元的谐振频率,这是起主导作用的。如果单元谐振频率偏高,就不能指望通过加大消音箱容积来延伸低频响应,因为单靠增大消音箱容积只能获得减少向上的漂移量,并不能使音箱的谐振越过扬声器自身谐振点向下延伸(半消音可以)。一对音箱的低频表现,应该是频率低、声压足、无隆隆声。而频率和声压两者很难同时照顾到{zj0}值,只能折衷考虑。追求低频的{zj0}方案是,单元口径大(口径略小但线性冲程长),谐振点低,适当的大容积,适量的吸声材料。低频响应的下限值,主要由单元谐振点所决定。任意一只低音单元,可以配用不同容积的箱体,箱容积偏大时,谐振峰向高峰漂移小,频响箱容积偏小,谐振峰向上漂移大,频宽变小,能量较为集中,使低端声压有所上升,箱容积小到一定程度时,会在低频段的频响曲线上出现一个上凸区。人们希望在保持声压频响曲线尽量平坦的前提下尽量拓宽低频下限。
   对谐振峰以上频段的背辐射声波,即非谐振频段声波,则要做{zd0}程度的消音处理,消音越彻底,背辐射声波对振动体的调制干扰越小,声染色就越小,下面声波就越清晰。为了使消音更彻底,增加吸声材料的数量是必要的,但不是{wy}的,消音需注意以下几点。
   (1)品种的选择
   不同材料具有不同的吸声材料,同一种材料在不同的频率下吸声系数也不同,吸声系数大的作为{sx}。应该选择谐振频段吸声系数小、其它频段吸声系数大的。这样可在保证{zj0}Q值的同时,尽可能地加入更多的吸声材料,对背辐射有害声波给予更多的吸收,减少有害声波的影响,提高正面声波的清晰度。
   (2)吸声材料的放置方式
   这个问题容易被除数大家忽视,例如有的品牌音箱将吸声材料扎成一个小布袋,随意丢在箱内,还有不少文章推荐在中间。笔者认为,放在中间有两种状况,一是填满空腔,二是不填满,同为中间效果不同。将吸声材料分散布满各个反射面是{zj0}方案,好处有两条:一是分散布置可降低厚度,使低频吸收系数降低的幅度大于中频吸收系数降低的幅度,在保证相同Q值的前提下,可放入更多的吸声材料,进一步加大中频波的吸收,从而获得更清晰的下面声波;二是分散放置时,反射到箱内各处的声波都能得到有效吸收。如果将吸声材料做布袋状,随意置于箱内,就会有部分声波被箱壁反射回到振膜(除非吸声布袋充满箱内空间,但这种机会不多),使干扰变大。
   (3)音箱结构设计
   传统观念比较重视箱板厚度和正面两侧棱角及减少驻波的内尺寸,但忽略了一个非常重要的问题,那就是要将减少背辐射反射回到振膜为首要目标.笔者见过发烧友将面板做到一寸厚,箱体厚实牢固,但声染色依然存在。采用特厚的面板,表面看是好事,其实搞不好会弄巧成拙,音染更大了。原因在于扬声器的背辐射声波刚出窗口就撞上厚厚的面板孔边,近距离的大量反射波重返振膜势必造成更大的音染。对现有过厚的面板,低音单元的面板开孔要由90°垂直边改造为45°左右斜边,减少空气振动阻力。
   只要充分理解了消音式音箱的含义,再融入传统的设计公式或计算机辅助设计,不难制作出满意的消音式音箱。
  2.2半消音箱
   消音式音箱具有设计调试简单的特点,音质也很好,但背辐射声波未能利用起来,低频失真较大,且低频下潜不深。而随后发展起来的半消音式音箱,对这两条缺陷有所改进,既能减少低频失真又能拓宽低频响应,但调试复杂一些,如果没有对音箱原理的深刻认识,没有简单的仪器帮助,很难将低频和中频及中高频部分做好,尤其是中频和中高频。
   倒相式、两级倒相式、空纸盆式、迷宫式、带通式(低音炮)、管道式、后号筒式、1/4波长加载式、传输线式、科尔顿式等等,均为半消音式音箱。它们都有一个共同特点,那就是充分利用背辐射声波在谐振频段的能量。通过箱腔空气谐振与扬声器谐振的互相耦合,{zd0}限度地将扬声器谐振能量较变为箱腔谐振能量,再通过开口或空纸盆将谐振能量辐射出去,从而提高低频声压并拓宽了低频响应。由于扬声器谐振能量通过谐振波这根本看不见的空气弹簧从开口大量辐射出去,加大了振膜的负载,有效抑制了振膜在谐振频段的大幅振动,从而减少了扬声器感应电势的产生,使失真显著减少,并能大幅提高低音扬声器的功率承受额。
   半消音式音箱的种类虽然很多,结构各不相同,但其工作原理大同小异,例如两级倒相式,就是在倒相式基础上,又增加了一个谐振腔,两个箱腔谐振与扬声器谐振互相耦合,使谐振频率处的交流阻抗曲线形成3个小峰,3个阻抗峰比2个阻抗峰更优一筹,能使谐振输出声波频带进一步展宽,拓展了低频。调试良好的箱腔谐振,使振膜在此频段的辐射阻抗大为提高,负荷的大幅提高使振幅更小,自感电势更低,失真因此更小,振动冲程的压缩使其具有更大的功率承受额,比单级谐振(倒相)箱性能更佳,只是调试更加复杂罢了。空纸盆箱与倒相箱原理xx一样,只是调试方法不同罢了。
   带通式低音炮有两种结构,一种是闭箱加倒相箱的合成,另一种是两个倒相箱的合成,工作原理一样,都是利用2个谐振峰工作在不同的频段,一高一低,xx一般设计在120Hz~180Hz,低端一般设计在20~60Hz,2峰又叠加后从而输出一个频率为带通状的声波。这两种箱型原理一样,但效率不一样,双倒相合成的效率略高一些。还可以将一个倒相箱和一个两级倒相箱组合成3腔式低音炮,让扬声器阻抗峰呈3峰的小群峰状,进一步拓宽输出频响,使输出的频段更宽更平坦,并得到更高的功率承受额,更高的电声转换效率,更低的失真,更低的低频。管式低音炮和箱式低音炮尽管造型不一,实际工作原理是相同的,但两者效率略有差异,管式效率更高些。不同的管径也略有差异,圆管内截面与振膜振动面积接近时效率{zg},相差越大效率越低。倒相管的尺寸也关系到效率高低,大而长的比小而短的效率更高些。
   科尔顿式是闭箱加带通箱的合成,而迷宫式、管道式、后号筒式、1/4波长加载式、传输线式,尽管形状不一,名称不一,内涵却是一致的,具有与倒相箱相同的工作原理。都是利用箱腔谐振与扬声器谐振的互相耦合,将扬声器谐振能量耦合到箱腔谐振,再通过开口辐射出去,同时降低了扬声器在谐振频段的振幅,减少了感应电势,从而改善了失真,并提高了功率承受额。
   半消音式音箱的背辐射声波,同消音式一样,也是分为两个频段,即有用的谐振频段和有害的非谐振频段。相同的是,对有害声波要尽一切手段,{zd0}限度地做消音处理,减少有害声波对内对外的干扰,从而提高下面声波的清晰度。不同的是对谐振频段的处理,消音式只是作简单的部分消音,让反映谐振峰阻尼特性的Q值保持在中等程度。半消音式除对谐振给予部分消音,让Q值保持在中等程度外,同时还对谐振波作{zd0}限度的利用,达到拓宽低频响应,减少失真,提高功率承受额的目的。
   3、总结
   综上所述,消音式与半消音式,都遵循一个共同的原理,即消音与半消音原理,对谐振频段作有限消音,对非谐振频段全消音处理。遵循这个原理,就能做好任意结构的音箱。
   低音炮没有非谐振频段信号输入,故不存在消音和自身的声压平衡问题,因此也不存在半消音问题,所以低音炮不需加入任何吸声材料,只要将阻抗峰调整到等高状即可。放音时的声压平衡由音量控制。

***




郑重声明:资讯 【扬声器知识_鹭过长空_百度空间】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——