AffineTransform类描述了一种二维仿射变换的功能,它是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注:straightness,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,相交直线的交角不变。大二学过的复变,“保形变换/保角变换”都还记得吧,数学就是王道啊!)。仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和剪切(Shear)。
此类变换可以用一个3×3的矩阵来表示,其{zh1}一行为(0, 0, 1)。该变换矩阵将原坐标(x, y)变换为新坐标(x', y'),这里原坐标和新坐标皆视为最末一行为(1)的三维列向量,原列向量左乘变换矩阵得到新的列向量:
[x'] [m00 m01 m02] [x] [m00*x+m01*y+m02]
[y'] = [m10 m11 m12] [y] = [m10*x+m11*y+m12]
[1 ] [ 0 0 1 ] [1] [ 1 ]
几种典型的仿射变换:
public static AffineTransform getTranslateInstance(double tx, double ty)
平移变换,将每一点移动到(x+tx, y+ty),变换矩阵为:
[ 1 0 tx ]
[ 0 1 ty ]
[ 0 0 1 ]
(译注:平移变换是一种“刚体变换”,rigid-body transformation,中学学过的物理,都知道啥叫“刚体”吧,就是不会产生形变的理想物体,平移当然不会改变二维图形的形状。同理,下面的“旋转变换”也是刚体变换,而“缩放”、“错切”都是会改变图形形状的。)
public static AffineTransform getScaleInstance(double sx, double sy)
缩放变换,将每一点的横坐标放大(缩小)至sx倍,纵坐标放大(缩小)至sy倍,变换矩阵为:
[ sx 0 0 ]
[ 0 sy 0 ]
[ 0 0 1 ]
public static AffineTransform getShearInstance(double shx, double shy)
剪切变换,变换矩阵为:
[ 1 shx 0 ]
[ shy 1 0 ]
[ 0 0 1 ]
相当于一个横向剪切与一个纵向剪切的复合
[ 1 0 0 ][ 1 shx 0 ]
[ shy 1 0 ][ 0 1 0 ]
[ 0 0 1 ][ 0 0 1 ]
(译注:“剪切变换”又称“错切变换”,指的是类似于四边形不稳定性那种性质,街边小商店那种铁拉门都见过吧?想象一下上面铁条构成的菱形拉动的过程,那就是“错切”的过程。)
public static AffineTransform getRotateInstance(double theta)
旋转变换,目标图形围绕原点顺时针旋转theta弧度,变换矩阵为:
[ cos(theta) -sin(theta) 0 ]
[ sin(theta) cos(theta) 0 ]
[ 0 0 1 ]
public static AffineTransform getRotateInstance(double theta, double x, double y)
旋转变换,目标图形以(x, y)为轴心顺时针旋转theta弧度,变换矩阵为:
[ cos(theta) -sin(theta) x-x*cos+y*sin]
[ sin(theta) cos(theta) y-x*sin-y*cos ]
[ 0 0 1 ]
相当于两次平移变换与一次原点旋转变换的复合:
[1 0 -x][cos(theta) -sin(theta) 0][1 0 x]
[0 1 -y][sin(theta) cos(theta) 0][0 1 y]
[0 0 1 ][ 0 0 1 ][0 0 1]
此类变换可以用一个3×3的矩阵来表示,其{zh1}一行为(0, 0, 1)。该变换矩阵将原坐标(x, y)变换为新坐标(x', y'),这里原坐标和新坐标皆视为最末一行为(1)的三维列向量,原列向量左乘变换矩阵得到新的列向量:
[x'] [m00 m01 m02] [x] [m00*x+m01*y+m02]
[y'] = [m10 m11 m12] [y] = [m10*x+m11*y+m12]
[1 ] [ 0 0 1 ] [1] [ 1 ]
几种典型的仿射变换:
public static AffineTransform getTranslateInstance(double tx, double ty)
平移变换,将每一点移动到(x+tx, y+ty),变换矩阵为:
[ 1 0 tx ]
[ 0 1 ty ]
[ 0 0 1 ]
(译注:平移变换是一种“刚体变换”,rigid-body transformation,中学学过的物理,都知道啥叫“刚体”吧,就是不会产生形变的理想物体,平移当然不会改变二维图形的形状。同理,下面的“旋转变换”也是刚体变换,而“缩放”、“错切”都是会改变图形形状的。)
public static AffineTransform getScaleInstance(double sx, double sy)
缩放变换,将每一点的横坐标放大(缩小)至sx倍,纵坐标放大(缩小)至sy倍,变换矩阵为:
[ sx 0 0 ]
[ 0 sy 0 ]
[ 0 0 1 ]
public static AffineTransform getShearInstance(double shx, double shy)
剪切变换,变换矩阵为:
[ 1 shx 0 ]
[ shy 1 0 ]
[ 0 0 1 ]
相当于一个横向剪切与一个纵向剪切的复合
[ 1 0 0 ][ 1 shx 0 ]
[ shy 1 0 ][ 0 1 0 ]
[ 0 0 1 ][ 0 0 1 ]
(译注:“剪切变换”又称“错切变换”,指的是类似于四边形不稳定性那种性质,街边小商店那种铁拉门都见过吧?想象一下上面铁条构成的菱形拉动的过程,那就是“错切”的过程。)
public static AffineTransform getRotateInstance(double theta)
旋转变换,目标图形围绕原点顺时针旋转theta弧度,变换矩阵为:
[ cos(theta) -sin(theta) 0 ]
[ sin(theta) cos(theta) 0 ]
[ 0 0 1 ]
public static AffineTransform getRotateInstance(double theta, double x, double y)
旋转变换,目标图形以(x, y)为轴心顺时针旋转theta弧度,变换矩阵为:
[ cos(theta) -sin(theta) x-x*cos+y*sin]
[ sin(theta) cos(theta) y-x*sin-y*cos ]
[ 0 0 1 ]
相当于两次平移变换与一次原点旋转变换的复合:
[1 0 -x][cos(theta) -sin(theta) 0][1 0 x]
[0 1 -y][sin(theta) cos(theta) 0][0 1 y]
[0 0 1 ][ 0 0 1 ][0 0 1]
?
package Assis; import javax.swing.*; import java.awt.*; import java.awt.event.*; import java.awt.geom.*; public class IsAffineTransform extends JComponent { private static final long serialVersionUID = 1L; public IsAffineTransform() { setDoubleBuffered(true); } public void paintComponent(Graphics g) { AffineTransform at; int i; Graphics2D g2 = (Graphics2D) g; // xx锯齿边缘 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); Dimension size = getSize(); g2.setColor(Color.white); g2.fill(new Rectangle2D.Double(0, 0, size.width, size.height)); at = new AffineTransform(); Font f1 = new Font("Serif", Font.BOLD, 18); g2.setFont(f1); Color colorArray[] = new Color[10]; colorArray[0] = Color.blue; colorArray[1] = Color.green; colorArray[2] = Color.magenta; colorArray[3] = Color.black; colorArray[4] = Color.blue; colorArray[5] = Color.green; colorArray[6] = Color.magenta; colorArray[7] = Color.black; for (i = 0; i < 8; i++) { at.rotate(Math.PI / 4, 180, 200); g2.setTransform(at); g2.setColor(colorArray[i % 8]); g2.drawString("Hello,World!", 200, 200); } } public static void main(String args[]) { MyWindowListener l = new MyWindowListener(); IsAffineTransform c = new IsAffineTransform(); JFrame fr = new JFrame("旋转"); fr.addWindowListener(l); fr.getContentPane().add(c, BorderLayout.CENTER); fr.pack(); fr.setSize(400, 400); fr.setLocation(400, 400); fr.setVisible(true); } } class MyWindowListener extends WindowAdapter { public void windowClosing(WindowEvent e) { System.exit(0); } }
?
package Assis; import java.awt.geom.AffineTransform; import java.awt.image.AffineTransformOp; import java.awt.image.BufferedImage; import java.io.IOException; import java.net.URL; import javax.imageio.ImageIO; import javax.swing.ImageIcon; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JTabbedPane; /** * 使图片水平翻转、垂直翻转、旋转180度 * * @author Administrator */ public class TestPicture { public static void main(String[] args) throws IOException { BufferedImage sourceImage = ImageIO.read(getURL("/user.png")); BufferedImage dstImage = null; // AffineTransform transform = new AffineTransform(-1, 0, 0, 1, // sourceImage.getWidth(), 0);// 水平翻转 AffineTransform transform = new AffineTransform(1, 0, 0, -1, 0, sourceImage.getHeight());// 垂直翻转 // AffineTransform transform = new AffineTransform(-1, 0, 0, -1, // sourceImage.getWidth(), sourceImage.getHeight());// 旋转180度 AffineTransformOp op = new AffineTransformOp(transform, AffineTransformOp.TYPE_BILINEAR); dstImage = op.filter(sourceImage, null); JTabbedPane tabbedPane = new JTabbedPane(); tabbedPane.add("Source Transform", new JLabel( new ImageIcon(sourceImage))); tabbedPane.add("Affine Transform", new JLabel(new ImageIcon(dstImage))); JFrame jframe = new JFrame(); jframe.setSize(800, 600); jframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); jframe.getContentPane().add(tabbedPane); jframe.setVisible(true); } /** 获得文件的{jd1}地址 */ public static final URL getURL(String path) { return "".getClass().getResource(path); } }
?