单晶硅、非晶硅、多晶硅太阳能电池简要介绍

单晶硅、非晶硅、多晶硅太阳能电池

1、太阳能电池发电原理:

 

   太阳电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。

 

   当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的的实质是:光子能量转换成电能的过程。

 

2、晶体硅太阳电池的制作过程:

 

   “硅”是我们这个星球上储藏最丰量的材料之一。自从19世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维,20世纪末.我们的生活中处处可见“硅”的身影和作用,晶体硅太阳电池是近15年来形成产业化最快。生产过程大致可分为五个步骤:a、提纯过程 b、拉棒过程 c、切片过程 d、制电池过程 e、封装过程。

 

 

3、太阳电池的应用:

 

   上世纪60年代,科学家们就己经将太阳电池应用于空间技术——通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。如:太阳能庭院灯、太阳能发电户用系统、村寨供电的独立系统、光伏水泵(饮水或灌溉)、通信电源、石油输油管道阴极保护、光缆通信泵站电源、海水淡化系统、城镇中路标、高速公路路标等。在世纪之交前后期间,欧美等先进国家光伏发电并入城市用电系统及边远地区自然界村落供电系统纳入发展方向。太阳电池与建筑系统的结合已经形成产业化趋势。

 

4、太阳电池基本性质:

 

a 、光电转换效率 η% 评估太阳电池好坏的重要因素。

 

     目前:实验室 η ≈ 24%,产业化:η ≈ 15%。

 

b、单体电池电压 V:0.4V——0.6V由材料物理特性决定。

 

c、填充因子FF%:评估太阳电池负载能力的重要因素。 FF=(Im×Vm)/(Isc×Voc)

 

   其中:Isc—短路电流,Voc—开路电压,Im—{zj0}工作电流,Vm—{zj0}工作电压;

 

d、标准光强与环境温度 地面:AM1.5光强,1000W/m2 ,t = 25℃;

 

e、温度对电池性质的影响,例如:在标准状况下,AM1.5光强,t=25℃某电池板输出功率测得为100Wp,如果电池温度升高至45℃时,则电池板输出功率就不到100Wp[/font]

  

    晶体硅光电池有单晶硅与多晶硅两大类,用P型(或n型)硅衬底,通过磷(或硼)扩散形成Pn结成制作,生产技术成熟,是光伏市场上的主导产品。采用埋层电极、表面钝化、强化陷光、密栅工艺、优化背电极及接触电极等技术,提高材料中的载流子收集效率,优化抗反肘膜、凹凸表面、高反射背电极等方式,光电转换效率有较大提高。单晶硅光电池面积有限,目前比较大的为 ∮10至 20cm的圆片,年产能力46MW/a。目前主要课题是继续扩大产业规模,开发带状硅光电池技术,提高材料利用率。国际公认{zg}效率在AM1.5条件下为24%,空间用高质量的效率在AMO条件约为13.5—18%地面用大量生产的在AM1条件下多在11—18%之间。以定向凝固法生长的铸造多晶硅锭代替#晶硅,可降低成本,但效率较低。优化正背电极的银浆和铝浆丝网印刷,磨图抛工艺,千方百计进一步降成本,提高效率,大晶粒多晶硅光电池的转换效率{zg}达18.6%。

 

非晶硅光电池

   a-Si(非晶硅)光电池一般采用高频辉光放电方法使硅烷气体分解沉积而成。由于外解沉积温度低,可在玻璃、不锈钢板、陶瓷板、柔性塑料片上沉积约1μm厚的薄膜,易于大面积化(05rn×l.0m),成本较低,多采用p in结构。为提高效率和改善稳定性,有时还制成三层P in等多层叠层式结构,或是插入一些过渡层。其商品化产量连续增长,年产能力45MW/a,10MW生产线已投入生产,全球市场用量每月在1千万片左右,居薄膜电池xx。发展集成型a-Si光电池组件,激光切割的使用有效面积达90%以上,小面积转换效率提高到 14.6%,大面积大量生产的为8-10%,叠层结构的{zg}效率为21%。研发动向是改善薄膜特性,xx设计光电池结构和控制各层厚度,改善各层之间界面状态,以求得高效率和高稳定性。

 

 

多晶硅光电池

   P-Si(多晶硅,包括微品)光电池没有光致衰退效应,材料质量有所下降时也不会导致光电池受影响,是国际上正掀起的前沿性研究热点。在单晶硅衬底上用液相外延制备的p-Si光电池转换效率为15.3%,经减薄衬底,加强陷光等加工,可提高到23.7%,用CVD法制备的转换效率约为12.6—l7.3%。采用廉价衬底的p—si薄膜生长方法有PECVD和热丝法,或对a—si:H材料膜进行后退火,达到低温固相晶化,可分别制出效率9.8%和9.2%的无退化电池。微晶硅薄膜生长与a—si工艺相容,光电性能和稳定性很高,研究受到很大重视,但效率仅为7.7%大面积低温p—si膜与—si组成叠层电池结构,是提高比a—S光电池稳定性和转换效率的重要途径,可更充分利用太阳光谱,理论计算表明其效率可在28%以上,将使硅基薄膜光电池性能产生突破性进展。铜烟硒光电池 CIS(铜锁硒)薄膜光电池己成为国际先伏界研究开发的热门课题,它具有转换效率高(已达到17.7%),性能稳定,制造成本低的特点。CIS光电池一般是在玻璃或其它廉价衬底上分别沉积多层膜而构成的,厚度可做到2-3μrn,吸收层CIS膜对电池性能起着决定性作用。现已开发出反应共蒸法和硒化法(溅射、蒸发、电沉积等)两大类多种制备方法,其它外层通常采用真空蒸发或溅射成膜。阻碍其发展的原风是工艺重复性差,高效电池成品率低,材料组分较复杂,缺乏控制薄膜生长的分析仪器。CIS光电池正受到产业界重视,一些知名公司意识到它在未来能源市场中的前景和所处地位,积极扩人开发规模,着手组建中试线及制造厂。

 

与负载的匹配

1、太阳能电池

太阳能电池参数有:空载电压和短路电流,两者乘积为太阳能电池的功率,即P=UI,P为电功率单位是瓦(W),U为电压单位是伏(V),I为电流单位是安(A)。还有工作电压和工作电流,工作电压一般为空载电压的80%-90%,工作电流一般为短路电流的80%-90%。

 

 

2、蓄电池(也称电瓶)

蓄电池的{zj0}充电电流和放电电流,一般按10小时充、放电率计算。例如:10AH的电瓶,其充电电流{zj0}为1A,{zj0}放电电流也是1A。7AH的电瓶即为700mA。40AH的电瓶为4A。充、放电电流过大都会对电瓶的寿命有一定的影响。

 

 

3、太阳能电池如何给蓄电池相匹配

如:{yt}要把12V10AH的电瓶充满,就可选用电压为15V-18V,电流为1A的太阳能电池板。要是要求两天将电池充满,那用15V500mA的太阳能电池板就可以了。{yt}按太阳照射10小时计算。

如:{yt}要把12V40AH的电瓶充满,可选用电压为15V-18V,电流为4A的太阳能电池板,或选取电流为1A的电池板用四块并联使用。如果要求两天将电瓶充满,那么太阳能电池板选2A的电流即可。充电时,太阳能电池的电压要高于电瓶电压20%-30%。

 

 

4、太阳能电池和电瓶如何与负载匹配

如:12V10AH的电瓶充满电后,可供12V10W的节能灯工作8小时。10W节能灯的工作电流为I=P/U,10/12=0.8A。电瓶按10小时放电率计算,正常放电电流为1A,考虑到效率问题,所以灯可以正常工作8--10小时。如用40W灯泡,电流为40/12=3.3A,那就只能工作2-3小时。

或者这样计算,10W的太阳能电池给蓄电池充电,供10W的灯来用电,按理想状态来讲,充电10小时就能用电10小时,而实际上是达不到的,只能用7-8小时。如果用40W灯照明,那就只能用2小时了。

 

太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,{zj1}活力的研究领域,是其中最受瞩目的项目之一。

制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。

 

已投稿到:
郑重声明:资讯 【单晶硅、非晶硅、多晶硅太阳能电池简要介绍】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——