超声波焊机电路设计及原理(上)_焊接之家

  超声波振荡电路的原理与设计

  1.概述

  传统的A类、B类、C类放大器是把有源器件(例如晶体管为讨论对象)作为电流源工作。在这些放大器中,晶体管工作在伏安特性曲线的有源区。集电极电流受基极激励信号控制作相应变化,而集电极电压是正弦波或正弦波的一部分。因此集电极在信号一周内同时存在颇大的电流和电压。要消耗相当一部分功率,这就是传统放大器的能量转换效率受限制的主要原因。开关模式放大器在提高放大器效率方面做了质的改革,它把有源器件作为接通/断开的开关运用。晶体管工作在伏安特性曲线的饱和区或截止区。当晶体管被激励而接通时进入饱和区,断开时进入截止区。由于晶体管饱和压降很低,集电极功耗降到{zd1}限度,提高了放大器的能量转换效率。一般在理想的晶体管条件下(饱和压降为零,饱和电阻为零.断开电阻为无穷大,开关时间为零),属于开关模式工作的D类放大器,理论效率为100%,实际效率可达90%以上。而通常的A类放大器效率只有50%,B类效率为785%。从中看出开关模式功率放大器在功率超声的应用中具有相当大的实际意义。

  实际使用中大多数的超声波发生器都是b,c类放大器,c类居多,部分特殊用途的设计为b类。

  

  2D类功率放大器

  推挽式D类功率放大器如图135所示,输入激励信号使一管导通时另一管截止,导通截止时间各占交流半周期。这种放大器有两种组态,一种是电压开关放大器图135(a);另一种是电流开关放大器(135(b))。在电压开关组态中,晶体管作为电压开关工作,集电极电压为方波,串联调谐电路只让基波电流通过。因此输出电压为集电极电压的基波分量,集电极电流为半个正弦波。在电流开关组态中,晶体管起电流开关作用。扼流圈L、,维持恒定的直流馈电电流,集电极电流为方波,而集电极电压为半个正弦波。

  图135D类功率放大器

  (a)为电压开关放大器,(b)为电流开关放大器.

  

  这里着重介绍电压开关型放大器。在功率超声中电压型开关放大器用得较多,其原因:

  一是从饱和损耗来看.电压开关放大器通常比电流开关放大器小,因为电压开关放大器中晶体管电流仅在180。饱和期间是大的,而在电流开关放大器,整个导通角内保持峰值集电极电流;另外方波电流时的饱和电压往往要大于正弦电流下的饱和电压;

  

  二是电流开关型的效率比电压开关型放大器低。但电流开关放大器取得功率的能力要强些;

  

  三是在电流开关电路中,当负载R突然断开时所出现的瞬态效应,会使开关承受较高的浪涌电压,因此降低了开关元件伏安容量的利用率。同时给设计者带来一定的麻烦。

  

  四是用相同开关元件,电流开关电路比电压开关电路的选用电源电压要低n倍,电源供出的电流大x倍。

  五是负载失调时,通过电压开关的电流变小,通过电流开关的电流变大。如果设计要求发生器能在一定的失调范围内工作,则电流开关电路对晶体管伏安容量的利用率又要降低好多。

  然而以上两种开关放大器其基本形式的输出特性都是恒压源性质,同时在固定负载下,伏安容量利用率相等。用相同的开关元件可以得到相同的输出功率。

  电压型开关放大器还可分成并联型电压开关放大器,如图1-35(a)所示和串联型电压开关放大器,如图136所示。

  图136串联电压开关放大器

  

  必须注意的是,无论开关如何连接,只要它们“开关出来的”是电压源,即只要它们是用作电压开关的,那么,它们的负载只能是一个串联谐振电路。这是因为电容在这里不允许作为“开关出来的”方波电压源的负载。否则,由于电容对高次谐波的短路作用.会给开关带来危害。

  串联开关电路和并联开关电路的原理是xx一样的。因此设计也是类同的,仅有的区别在于电源电压的选择方面。如果开关元件所能承受的电流和电压是一定的,那么并联接法比串联接法所选用的电源电压应低一倍,而电源供出的电流应大一倍,举例来说,如果用串联开关选220V电压消耗4A电流,那么改用并联开关时应选110V电压消耗8A电流。

  

更多相关内容点击:



郑重声明:资讯 【超声波焊机电路设计及原理(上)_焊接之家】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——