飞砂料熟料煅烧过程中出现较多的飞砂料。这既影响熟料质量,又影响窑衬、三次风管等设备和设施的使用寿命。经分析,所用高品位石灰石的结晶完整,煤中S量高,及配料率值不合理,SM过高、IM过低等是飞砂料产生的原因。该公司采取了调整生料配料、加强原燃料质量控制和优化操作、缩短窑尾上升烟道等针对性技术措施,使飞砂料得到有效控制.在熟料生产过程中,发现熟料中的细粉(俗称飞砂料)量较大 约占10%,此飞砂料的产生不仅影响了熟料质量,减少了窑内的耐火砖、喷煤管、窑头罩、三次风管浇注料和窑头电除尘进口风管等设备的使用寿命,而且在处理飞砂料时还对环境造成污染。 1 飞砂料形成原因探析 1.1 原燃料因素 (1) 石灰石的晶型结构对物料煅烧结粒性的影响。所用石灰石越纯,晶体越大,结晶越完整且有规则,其煅烧结粒性越差,所需热耗越高。在相同的生产工艺条件下,其生产的熟料f-CaO量较高,熟料强度低,并会产生大量飞砂料。而当石灰石中含有一定的泥质成分,纯度较低,成非晶体状或细泥晶状时,往往结粒性较好,能够烧出质量较高的熟料且不易产生飞砂料。从我厂的石灰石岩相分析报告来看,生产用石灰石中,高品位石灰石的晶型结构和晶体发育较好,而低品位石灰石的晶型结构较粗,晶体发育不良。实践中发现,当用高品位石灰石生产时,熟料中的飞砂料量就大。 1.2 配料率值不合理[1] (1) SM太高。熟料SM过高也易产生飞砂料。SM是表示在煅烧过程中或在烧成带内固相与液相的比例。在1 400 ℃以上时,熔融物料中的固相为C3S和C2S,Si02基本上存在于固相中,液相则包括了全部的Al2O3和Fe2O3。若SM过高,液相量就会偏少,就不足以将物料结成大的颗粒,熟料颗粒细小,容易产生飞砂料。我厂石灰石中因SiO2含量高,设计时又没有考虑铝质校正原料,因此熟料中SM过高,平均在2.7~3.0,液相量L[L=3w(Al2O3)+ 2.25w(Fe2O3)+w(MgO)]偏低,平均在23%左右。 1.3 其它因素 (1) 入窑分解率过高,使窑内过渡带相应延长产生飞砂料的原因[1]。我厂分解炉规格为 5.012 m×19.00 m,热容量大,表现为入窑分解率较高(统计值为92%~96%)和入窑物料温度高(经常为880~ 950 ℃)。入窑分解率高,相应回转窑内的碳酸盐分解带缩短了 而烧成带受火焰形状限制不可能随意拉长,因此相应的过渡带变长,这样物料在950~ 1 250 ℃的温度段停留时间过长,而在这个温度段下物料的扩散速度很快,却又形不成阿利特相,势必造成贝利特和游离石灰的再结晶,形成粗大的结构,降低了物料的表面活性和晶格缺陷活性,阻碍了下一步阿利特的形成。熟料中的液相也由于可浸润的表面减少了,难于将物料粘结成粒,严重时造成熟料过烧又有大量的粉料产生,即飞砂料。 2 解决措施 通过上述分析,针对产生飞砂料的原因采取了如下相应措施。 2.1 调整配料 物料硅高铝低的,增加铝质校正原料,即由原来石灰石、粘土、铁粉三组分配料改为现在的石灰石、粘土、铝矾土、铁粉四组分配料(其原料化学组成见表1),从而改变了原来熟料硅高铝低的状况。调整后的熟料率值控制为:KH=0.89±0.02,SM=2.50±0.01,IM=1.50±0.01。配比改变后,液相量达26.18%,熟料结粒状况明显好转。 2.2 加强生产控制,充分利用原燃料 (1) 充分利用低品位石灰石,同时加强生料质量的监控力度。根据我厂石灰石的情况,品位高的石灰石结晶普遍较好,品位较低的石灰石结晶情况普遍较差的现象,通过加强矿山石灰石分析,从矿山的钻孔样开始预控制,充分利用了低品位的石灰石。生产用石灰石的w(CaO)值控制,由原先的48%以上降至45%~47.5%,并投入荧光分析仪进行生料成分控制,使我厂的生产全过程都在监测之下,使得物料的稳定性大大加强。 2.3 优化操作和技改 原料固有的一些特性,飞砂料的存在不可避免。通过在操作中的不断摸索,在进行配料调整、加强生产管理和合理利用原燃料的基础上,进行优化操作,可减少飞砂料量。 3 结语 通过采取上述系列措施后,飞砂料得到了较好的控制。虽然近来飞砂料还时有发生,但飞砂料量已得到明显减少;窑内的耐火砖、喷煤管、窑头罩、三次风管浇注料和窑头电收尘进口风管等设备的寿命大大提高。随着窑系统设备运转率提高、窑系统热工制度趋于合理稳定及物料稳定性的提高,熟料质量和水泥质量的稳定性大大增强,在强度和标准偏差上均达到了先进企业标准。 |