牛气:歼10大改特改隐形能力已直逼F-35_军事参考_新浪博客

歼10改气动外形大变:隐形能力已直逼F-35

-

 

歼10目前是不具备隐形能力的,如果将歼10改进型的气动外形进行大的改动,其隐形能力就可以直逼F-35。虽然F-35的隐形能力也不是很强,但是如果歼10改的隐形能力可以直逼F-35,对于中国空军来说也是一件好事。

 

F-35的隐身设计借鉴了F-22的很多技术与经验,其RCS(雷达反射面积)分析和计算,采用整机计算机模拟(综合了进气道、吸波材料/结构等的影响),比F-117A的分段模拟后合成更先进、全面和xx,同时可以保证机体表面采用连续曲面设计。F-35A的正面最小RCS估计为1平方米,比苏- 27、F-15(空机前向RCS均超过10平方米)低。由于F-35武器采用内挂方式,不会引起RCS增大,隐身优势将更明显。

 

 

 

在红外隐身方面,从一些资料可推断出该机在推力损失仅有2%-3%的情况下,将尾喷管3-5微米中波波段的红外辐射强度减弱了80%-90%,同时使红外辐射波瓣的宽度变窄,减小了红外制导空空导弹的可攻击区。

 

F-35的隐身设计,不仅减小了被发现的距离,还使全机雷达散射及红外辐射中心发生改变,导致来袭导弹的脱靶率增大。这样该机的主动干扰机、光纤拖曳式雷达诱饵、先进的红外诱饵弹等对抗设备也更容易奏效。根据有关模型进行计算,取F-35的前向RCS为0.1平方米,与10平方米的情况比较,在其他条件相同的情况下,前者的超视距空战效能比后者高出5倍左右。

 

F-35上的APG-81 AESA雷达阵面尺寸较小,而且仅拥有1200个发射/接收模块,另外,APG-77的功率(据说达到16.4KW)要远大于APG-81,因此。F- 22A的雷达对于空中目标的探测距离比F-35远大约1/3。F-35有四大关键机载电子系统——诺斯罗普-格鲁曼公司的AN/APG-81有源相控阵雷达和光电分布式孔径系统(EODAS)、英航宇系统公司的综合电子战系统及洛-马公司的光电瞄准系统(EOTS)。

 

飞机的气动外形主要指什么?飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。关系到飞机的飞行特征及性能。故将飞机外部总体形态布局与位置安排称作气动布局。其中,最常采用的机翼在前,尾翼在后的气动布局又叫作常规气动布局。气动布局形式是气动布局设计中首先需要考虑的问题。目前飞机设计中主要采用的包括以下几种: 正常布局; 鸭式布局; 变后掠布局; 三翼面布局;无平尾布局;无垂尾布局;飞翼布局。 正常布局是迄今为止被使用最多的一种布局形式,目前仍然被应用于各类飞机之上。鸭式布局在早期未能得到足够的重视,但随着超音速时代的来临,鸭式布局的优点逐渐为人们所认识。目前广泛应用于战斗机之上的近距鸭式布局利用鸭翼与机翼的前缘分离涡之间相互有利干扰使涡系更加稳定,推迟了涡的破裂,为大迎角飞行提供了足够的涡升力,显着的提高了战斗机的机动性。此外,采用ACT和静不稳定的鸭式布局的优点则更为突出。变后掠布局较好的兼顾了飞机分别在高速和低速状态下对气动外形的要求,在六七十年代曾得到广泛应用,但由于变后掠结构所带来的结构复杂性、结构重量的激增,再加上其它一些更为简单有效的协调飞机高低速之间矛盾的措施的使用,在新发展的飞机中实际上已经很少有采用这种布局形式的例子了。 三翼面布局形式可以说最早出现在六十年代初,米高扬设计局由米格-21改型而得的Е- 6Т3和Е-8试验机。三翼面的采用使得飞机机动性得到提高,而且宜于实现直接力控制达到对飞行轨迹的xx控制,同时使飞机在载荷分配上也更趋合理。无平尾、无垂尾和飞翼布局也可以统称为无尾布局。对于无平尾布局,其基本优点为:超音速阻力小和飞机中两较轻,但其起降性能及其它一些性能不佳,总之以常规观点而言,无尾布局不能算是一种理想的选择。然而,随着隐身成为现代xx飞机的主要要求之一以及新一代战斗机对超音速巡航能力的要求,使得无尾——特别是无垂尾形式的战斗机方案越来越受到更多的重视。对于一架战斗机而言,实现无尾布局将带来诸多优点。首先是飞机重量显着减少;其次,因为取消尾部使全机质量更趋合理地沿机翼翼展分布,从而可以减小机翼弯曲载荷,使结构重量进一步减轻;另外,尾翼的取消可以明显减小飞机的气动阻力,同常规布局相比,其型阻可减小60%以上;不言而喻,取消尾翼之后将使飞机的目标特征尺寸大为减小,隐身性能得到极大提高;{zh1}尾翼的取消同时减少了操纵面、作动器和液压系统,从而也改善了维修性和具有了更低的全寿命周期成本。在有垂尾的常规飞机上,垂尾的作用是提供偏航/滚转稳定性,尤其是偏航稳定性,此外垂尾的方向舵还参与飞机的偏航控制。取消垂尾之后,飞机将变为航向静不稳定,同时丧失偏航控制能力。采用放宽静稳技术之后,无垂尾飞机可以是航向静不稳的,但不能是不可控的。针对这一问题可以采用推力矢量技术加以解决。推力矢量技术作为新一代战斗机高机动性的主要动力目前已经得到了较为完善的发展,大量实验都证明,在无垂尾的情况下,推力矢量具有足够有效的操纵功能。一个不容忽视的问题是,推力矢量系统发生故障或者在作战中受伤后飞机如何操纵。在{zd1}的要求下,推力矢量系统失效后飞机至少还应具有安全返航的能力,因此无垂尾飞机的平飞、不太剧烈的转弯机动以及着陆所需的偏航控制能力应该能够由气动力控制来满足。作为无尾飞机的余度保险操纵方式之一的是与传统机翼设计方法xx不同的所谓“主动气动弹性机翼”(AAW)。在传统机翼设计中,一般都要保证刚度以使机翼变形最小,而AAW利用机翼的柔度作为一种对飞机进行操纵的方式,它通过使整个机翼发生一定的变形而得到操纵飞机所需的气动力。通常规舵面相比,AAW具有效率高而翼面变形小的特点。除了AAW技术之外,还有其它一些传统非传统的气动操纵方式也可以推力矢量系统的余度保险和补充。它们包括开裂式副翼、机翼扰流板、全动翼梢、差动前翼、非对称机头边条、扰流片-开缝-折流板(SSD)、前缘襟翼等等。无论是采AAW还是采用气动操纵面的方式,无尾飞机都需要有全新的飞行控制律。无尾飞机在纵向和航向都将是静不稳定的,这就要求飞机上的各类操纵装置共同协作产生所需的各种力和力矩,各操纵装置还将存在各种线性或非线性的相互干扰,使得控制律变得相当复杂。此外在部分操纵装置失效的情况下,剩下的操纵装置需要实时重新构型,并且需要实时地采用新的控制律,即所谓“重构系统”。这些都是无尾飞机设计中需要加以解决的问题。中国飞机气动外型的设计是和中国的科技生产力呈正比的,歼8研制时中国的科技水平还较差,气动外型的设计以实用为主,而歼10研制时中国的科技水平已经有所提高,在实用的基础上进行了更加美观的设计

焦点推荐:

美国称有两条

已投稿到:
郑重声明:资讯 【牛气:歼10大改特改隐形能力已直逼F-35_军事参考_新浪博客】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——