1引言
目前,我国绝大部分矿井提升机(超过70%)采用传统的交流提升机电控系统(tkd-a为代表)。tkd控制系统是由继电器逻辑电路、大型空气接触器、测速发电机等组成的有触点控制系统。经过多年的发展,tkd-a系列提升机 电控系统虽然已经形成了自己的特点,然而其不足之处也显而易见,它的电气线路过于复杂化,系统中间 继电器、电气接点、电气联线多,造成提升机因电气故障停车事故不断发生。采用plc技术的新型电控系统都已较成功的应用于矿井提升实践,并取得了较好的运 行经验,克服了传统电控系统的缺陷,代表着交流矿井提升机电控技术发展的趋势。 2总体设计方案
基于plc技术的矿井交流提升机电控系统控制电路组成结构如图1所示,要由以下5部分组成:高压主电路(包括高压换向器、电动机、启动柜、 动力制动电源)、主控plc电路、提升行程检测与显示电路、提升速度检测、提升信号电路,其中高压主电路部分仍采用传统的继电器控制电路。
工作过程:当井口或井底通过信号通信电路发出开车信号后,开车条件具 备。司机将制动手柄向前推离紧闸位置,主电动机松闸。司机将主令控制器的操作手柄推向正向(或反向)极端位置,主控plc通过程序控制高压换向器首先得 电,使高压信号送入主电动机定子绕组,主电动机接入全部转子电阻启动,然后依次切除8段电阻,实现自动加速,{zh1}运行在自然机械特性上。交流提升机运行 时,旋转编码器跟随主电动机转动,输出2列a/b相脉冲,分别接到主控plc的高速计数器hsc0的a/b相脉冲输入端,由主控plc根据a/b脉冲的相 位关系,自动确定hsc0的加、减计数方式。根据hsc0的计数值,就可以计算出提升行程并显示。同时只根据旋转编码器输出的a相脉冲,主控plc进行加 计数。根据hsc1在恒定间隔时间内的计数值,就可以计算出提升速度。
3硬件设计
3.1提升机主回路部分设计
主回路用于供给提升电动机电源,实现失压、过流保护,控制电机的转向和调节转速。主回路由高压开关柜、高压换向器的常开触头、动力制动接触器的常开主触头、动力制动电源装置、提升电动机、电机转子电 阻、加速接触器的常开主触头(1jc~8jc)和装在司机操作台上的指示电流表和电压表等组成。系统原理图如图2所示。
主拖动电机选择:鼠笼式异步电动机尽管结构简单、价格便宜、维护方便,但很难满足提升机启动和调速性能的要求,因此,矿井提升机交流 拖动系统均选用绕线式异步电动机作为主拖动电动机,绕线式异步电动机转子串电阻后能限制启动电流和提高启动转矩,并能在一定范围内进行调速。地面变电所送 来的二路6kv电源,一路工作,一路备用,经tgg-6型高压开关柜的隔离开关glk1、油开关gyd、高压换向器线路接触器xlc的主触头、正向(或反向)接触器zc(或fc) 后到主电机的定子。在高压开关柜内还设有电压互感器yh,失压服扣线圈syq,电流互感器lh和过流脱扣线圈glq,用于失压或过流保护。在syq线圈回 路中还串联接有紧急停车开关jtk1和换向器室栏栅门闭锁开关lsk。
3.2制动回路设计
矿井提升机大多数采用绕线式异步电动机来拖动,且多数场合下采用有级切换转子回路电阻来实现调速。其制动系统多采用可控硅动力制动和可调闸制动系统。前者为电气制动,后者为机械制动。提升机在减速段运行中,当速度在0~5% 范围内,电气制动起作用,可调闸不起作用;当超速在5%~10%范围内,电气制动限幅,并维持{zd0}制动功率,同时可调闸起作用,总制动力矩增大;当超速 10%时,过速继电器gsj1作用于安全回路,可调闸将提升机滚筒闸住。
晶闸管动力电源装置主要有两部分组成,一部分为主回路,另一部分为触发回路。本文设计中采用kzg型三相可控硅动力制动系统。此系统为单闭 环动力制动系统,系统方框图如图3所示,从图中可以看出速度偏差控制和脚踏控制是“或”的关系,哪个信号大,就允许哪个信号通过,亦即相应的控制方式发挥 作用。因此,单闭环控制时司机可以脚踏制动进行控制,而在脚踏控制时,如提升机超速,闭环系统又可起监视保护作用。
3.3速度给定回路
速度给定方式就是按行程原则产生速度给定信号。在矿井提升机电控系统中,通常是采用凸轮板给定方法,即由凸轮板控制自整角机的输出电压。由 于自整角机没有可滑动的触点,因此电压变化较平稳,工作较可靠,维护量较小。原理图如图4所示。
自整角机作为给定装置应用时是将激磁绕组通以单相110伏交流电,在三相同步绕组中任取两相的输出作为给定电压的输出。其输出电压为交流, 如需要直流则应通过桥式整流输出。
3.4动力制动回路
晶闸管整流器及其触发装置成套地装在电源柜中,动力制动电源装置输出电压的大小与触发装置输入的控制信号电压的高低有关。
控制信号电压由两个回路组成一个或门电路,如图5所示。只要其中之一达到触发要求时,即可使晶闸管触发起制动作用。这两个回路,一个是由实 际速度与给定速度形成的速度偏差值,自动控制cf3磁放大器的输出和动力制动输出,另一条回路由司机控制自整角机cd2的输出以实现人工调节。
在人工控制动力制动系统时,由司机控制脚踏板带动自整角机cd2发生控制电压。调整时应使其与磁放大器cf3的输出相配合。当脚跟刚刚踩 下,脚尖尚未下踏时,相当于控制开关闭和,使dzc得电吸合,晶闸管动力制动投入,但此时自整角机cd2输出很小,动力制动电流最小。当司机脚尖踏下后, 自整角机cd2输出{zd0}。
在脚踏动力制动与cf3输出回路中,分别由z1和z2两个二极管组成一个或门电路,此两种控制信号成并联关系,互不影响。
3.5行程检测与显示
利用旋转编码器将提升机的运行位置转化为脉冲,plc对此脉冲进行高速计数,通过相应的计算自动生成提升机位置的相关数据,传送到plc内 部高速计数器的存储单元。为了提高计数器的脉冲精度,选用日本omron公司的e6c-cwsc型可逆旋转编码器,其脉冲准确精度高,在低速时不会丢失脉 冲。
为了便于提升机司机操作,提升机电控系统需设置可靠的行程显示装置(又称深度指示器)用于显示提升容器在井筒中的位置。本文设计根据编码器 所测的运行距离(0~570m),采用3个led七段显示器作为提升机位置的显示。
3.6辅助回路设计
辅助回路是用于对辅助设备进行供电和控制的。辅助回路的电源电压为交流380v,两回路供电。辅助回路所带负荷有:晶闸管动力制动电源装 置、制动油泵电动机、润滑油泵电动机等。
4提升机主电动机转子电阻计算
电动机转子电阻的计算,对提升设备的正常运转有着重要的作用。进行启动电阻计算时,首先应确定预备级级数和加速级级数。因为所选的级数直接 影响到{zd0}切换力矩的增大或减小及平均启动加速度的提高或降低,甚至由于过载能力不够而需加大电动机容量,故应全面考虑,选出经济合理的级数。一般情况 下,预备级级数和加速级级数的选择见附表所示。
三相平衡启动电阻的计算方法很多,但基本上可分为两种类型:一类是按给定加速度来计算启动电阻,另一类是以充分利用电动机的过载能力为出发 点来计算。因{dy}类方法计算简便准确,故本文中采用此方法计算。
5plc控制系统设计
5.1主控plc控制电路设计
根据提升机的运行方式和煤矿企业的固有特点,国产矿井提升机电控制系统中应用plc也发展很快。但从现场使用情况来看,目前,在国产煤矿提 升机控制系统中,plc主要用于处理开关量,以替代老式提升机控制系统中众多的继电器、接触器、复杂的连线以及信号显示系统,而涉及到提升机安全运行的制 动系统中的模拟量和自动调节过程,大多还是通过用半导体器件、运算放大器等可调闸和可控硅动力制动的普通电子模式来处理。使用过程中经常会出现零点漂移、 电子元件损坏,并且存在维修及重新调试难、可靠性差等缺点,因而使提升机电控系统的可靠性降低。针对上述问题,深入研究用plc控制煤矿提升机控制系统是 非常必要的。
本文中主控单元可编程序控制器(plc)设计,由一个cpu226主机和两片i/o扩展模块em223和em222组成,设计含有40个输 入点40个输出点,则具体i/o接线如图7所示。
5.2plc控制软件设计
plc控制软件主程序流程图如图8所示。
(1)初始化子程序用于对高速计数器hsc0和hsc1进行以下操作:写控制字,定义工作模式,清零,写设定值,设置定时中断,连接中断, 启动计数。
(2)制动油泵、润滑油泵、动力制动电源、五通阀电磁铁、四通阀电磁铁和安全阀电磁铁等的控制属于交流提升机安全运行所需辅助设备 的控制。
(3)制动油过压信号、制动油过热信号和润滑油过压信号的显示控制用于交流提升机工作状态的显示控制。
(4)调绳闭锁回路是在调绳过程中起安全保护作用。双卷简提升机换水平调绳时,调绳转换开关1hk-3断开,使调绳连锁环节串入安 全回路。正常运行时,lhk-3接通,调绳连锁不起作用。
(5)提升信号回路用于对交流提升电动机启动或减速作好准备。
(6)位置测量子程序用于测量提升机在矿井中的位置。
(7)行程显示子程序根据旋转编码器的脉冲个数来显示当前的行程位置。
(8)减速信号回路和减速信号铃用于减速控制并且发出铃声提示信号。
(9)自动换向工作回路和手动正反转工作回路分别用于自动和手动方式下对交流提升电动机进行正反转控制。
(10)安全回路用于防止和避免交流提升机发生意外事故。
(11)定时器控制回路和转子电阻通断控制用于交流提升电动机启动或减速时的转子电阻切换控制。
(12)动力制动回路用于动力制动电源的投入与切除控制。
(13)脚踏制动联锁和工作闸继电器用于交流提升电动机制动控制。
6结束语
提升机的控制系统采用plc控制与tkd-a控制系统结合的方式,具有可靠、安全、实现方便等优点。采用plc实现提升机主要控制逻辑,增 加控制功能,实现高效自动化生产。其关键是充分发挥plc的优势,利用其综合测控机制,解决好测速、保护等问题,实现与原系统的良好衔接,提高系统的综合 性能,达到低投入高产出。从系统的应用情况看仍存在一些需进一步完善的问题如:网络通信功能和先进控制技术及策略如智能控制等,在现有plc技术的基础上 进一步进行功能扩充,将会进一步提高我国矿井提升电控系统的现代化水平。