冷备用状态:是指线路两侧断路器、隔离开关都在断开位置,
线路与变电站带电部位有明显断开点。但线路本身处于完好状
态。
检修状态:是指线路两侧断路器、隔离开关都在断开位置,
两侧装设了接地线或合上了接地开关。或线路虽然不检修,但因
二次设备上有工作使该线路停电,尽管该线路两侧没有装设接地
线或合上接地开关,但该线路不具备投入运行的条件,也应视该
线路为检修状态。
热备用状态:是指该设备已具备运行条件,经一次合闸操作即可转为运行状态的状态。母线、变压器、电抗器、电容器及线路等电气设备的热备用是指连接该设备的各侧均无安全措施,各侧的断路器全部在断开位置,且至少一组断路器各侧隔离开关处于合上位置,设备继电保护投入,断路器的控制、合闸及信号电源投入。断路器的热备用是指其本身在断开位置、各侧隔离开关在合闸位置,设备继电保护及自动装置满足带电要求。
发电机组的准同期并列
从概念上讲准同期就是准确周期。用准同期法进行并列操作,发电机组电压必须相同,频率相同以及相位一致,这可通过装在同期盘上的两块电压表、两块频率表以及同期表和非同期指示灯来监视,并列操作步骤可以总结为如下四个步骤:
1.将其中一台发电机组的负荷开关合上,将电压送至母线上,而另一台机组处在待并状态。
2. 合上同期开头,调节待并发电机组的转速,使它等于或接近同步转速(与另一台机组的频率相差在半个周波以内),调节待并发电机组的电压,使其与另一台发电机组电压接近,在频率与电压均相近时,同期表的旋转速度是越来越慢的,同期指示灯也时亮时暗;3.当待并机组与另一台机组相位相同时,同期表指针指示向上方正中间位置,同期灯最暗,当待并机组与另一台机组相位差{zd0}时,同期表指向下方正中位置,此时同期灯最亮,当同期表指针按顺时针方向旋转时,这说明待并发电机的频率比另一台机组的频率高,应降低待并发电机组的转速,反之当同期表指针按逆时针方向旋转时,应增加待并发电机组的转速。
4.当同期表指针顺时针方向缓慢旋转,指针接近同期点时,立即将待并机组的断路器合闸,使两台发电机组并列。并列后切除同期表开关和相关的同期开关。
发电机失磁故障
发电机失磁故障是指发电机的励磁突然消失或部分消失。对于失磁的原因有:转子绕组故障、励磁机故障、自动灭磁开关误跳闸、及回路发生故障等。
当发电机xx失去励磁时,励磁电流将逐渐衰减至零。由于发电机的感应电势Ed 随着励磁电流的减小而减小,因此,其励磁转矩也将小于原动机的转矩,因此引起转子加速,使发电机的功角δ增大。当δ超过静态稳定极限角时,发电机与系统失去同步。发电机失磁后将从系统中吸取感性无功供给转子励磁电流,在定子绕组中感应出电势。在发电机超过同步转速后,转子回路中将感应出频率为ff-fs(fs为系统频率、ff为发电机频率)的电流,此电流产生异步制动转矩,当异步转矩与原动机转矩达到平衡时,即进入稳定的异步运行。
当发电机异步运行时,将对发电机及电力系统产生巨大的应影响。⑴需要从系统中吸收很大的无功功率以建立发电机磁场。⑵由于从电力系统中吸收无功功率将引起电力系统的电压下降,如果电力系统的容量较小或无功储备不足,则可能使失磁的发电机端电压、升压变压器高压侧的母线电压、及其它的临近点的电压低于允许值,从而破坏了负荷与电源间的稳定运行,甚至引起电压崩溃而使系统瓦解。⑶由于失磁发电机吸收了大量的无功功率,因此为了防止其定子绕组的过电流,发电机所发的有功功率将减少。⑷失磁发电机的转速超过同步转速,因此,在转子及励磁回路中将产生频率为ff-fs的交流电流,因而形成附加的损耗,使发电机转子和励磁回路过热。对于水轮机,①其异步功率较小,必须在较大的转差下运行,才能发出较大的功率。②由于水轮机的调速器不够灵敏,时滞大,乃至可能在功率未达到平衡时就以超速,使发电机与系统解列。③其同步电抗较小,异步运行时,则需要从电网吸收大量的无功功率。④其纵轴和横轴不对称,异步运行时,机组震动较大等因素的影响,因此发电机不允许失磁。因此必须加装失磁保护。
甩负荷
甩负荷:因为电力紧张,供电负荷超过了给你的指标,要求你将不重要的负荷停掉,将负荷减小到规定的目标。或是电厂内部的原因,供网出口断路器突然跳闸,发电机负荷突然掉到基本为零!就叫甩负荷.
重合闸前加速
重合闸前加速保护方式一般用于具有几段串联的辐射形线路中,重合闸装置仅装在靠近电源的一段线路上。当线路上(包括相邻线路及以后的线路)发生故障时,靠近电源侧的保护首先无选择性地瞬时动作于跳闸,而后再靠重合闸来纠正这种非选择性动作。
其缺点是切除{yj}性故障时间较长,装有重合闸装置的断路器动作次数较多,且一旦断路器或重合闸拒动,将使停电范围扩大。
重合闸前加速保护方式主要适用于35kV以下由发电厂或主要变电站引出的直配线上。
自动重合闸
自动重合闸(auto-reclosing)
广泛应用于架空线输电和架空线供电线路上的有效反事故措施(电缆输、供电不能采用)。即当线路出现故障,继电保护使断路器跳闸后,自动重合闸装置经短时间间隔后使断路器重新合上 。大多数情况下,线路故障(如雷击、风害等)是暂时性的,断路器跳闸后线路的绝缘性能(绝缘子和空气间隙)能得到恢复,再次重合能成功,这就提高了电力系统供电的可靠性。少数情况属{yj}性故障,自动重合闸装置动作后靠继电保护动作再跳开,查明原因,予以排除再送电。一般情况下,线路故障跳闸后重合闸越快,效果越好。重合闸允许的最短间隔时间为0.15~0.5秒 。线路额定电压越高,绝缘去电离时间越长。自动重合闸的成功率依线路结构、电压等级、气象条件、主要故障类型等变化而定。据中国电力部门统计,一般可达60%~90%。用电部门的另一种广泛应用的反事故措施是备用电源自动投入,通常所需时间为0.2~0.5秒。它所需投资不多而维持正常供电带来的经济效益甚大。
什么叫重合闸后加速?为什么采用检定同期重合闸时不用后加速?
答:当线路发生故障后,保护有选择性地动作切除故障,重合闸进行—次重合以恢复
供电。若重合于{yj}性故障时,保护装置即不带时限无选择性的动作断开断路器,这
冲方式称为重合闸后加速。
情况下才进行重合的。若线路属于{yj}性故障,无压侧重合后再次断开,此时检定同
期重合闸不重合,因此采用检定同期重合闸再装后加速也就没有意义了。若属于瞬时
性故障,无压重合后,即线路已重合成功,不存在故障,故同期重合闸时不采用后加
速,以免合闸冲击电流引起误动
什么是变压器的过励磁?有何危害?如何避免?
答:变压器的过励磁就是当变压器在电压升高或频率下降时将造成工作磁通密度增加,使变压器的铁芯饱和。其产生的原因主要有:当电网因故解列后造成部分电网刚甩负荷而过电压、铁磁谐振过电压、变压器分接头连接调整不当、长线路末端带空载变压器或其他误操作、发电机频率末到额定值即过早增加励磁电流、发电机自励磁等,这些情况下都可能产生较高的电压而引起变压器过励磁。
变压器过励磁的危害是:当变压器运行电压超过额定电压的10%时,就会使变压器铁芯饱和,而因饱和产生的漏磁将使箱壳等金属构件涡流损耗增加,铁损增大,造成铁芯温度升高,同时还会使漏磁通增强,使靠近铁芯的绕组导线、油箱壁和其他金属构件产生涡流损耗,使变压器过热,绝缘老化,影响变压器寿命,严重时造成局部业形和损伤周围的绝缘介质.有时甚至烧毁变压器。
一般避免变压器过励磁的方法主要有:
(1)防止变压器运行电压过高,一般电压越高,变压器过励磁情况越严重,允许运行的时间也就越短。
(2)加装过励磁保护,根据变压器特性曲线和不同的允许过励磁倍数发出告警信号或切除变压器。