混凝土基础知识培训(3)

混凝土基础知识培训(3)

 

引用


 

引用


 

第五节    混凝土外加剂

  外加剂是指能有效改善混凝土某项或多项性能的一类材料。其掺量一般只占水泥量的5%以下,却能xxxx混凝土的和易性、强度、耐久性或调节凝结时间及节约水泥。外加剂的应用促进了混凝土技术的飞速进步,技术经济效益十分显著,使得高强高性能混凝土的生产和应用成为现实,并解决了许多工程技术难题。如远距离运输和高耸建筑物的泵送问题;紧急抢修工程的早强速凝问题;大体积混凝土工程的水化热问题;纵长结构的收缩补偿问题;地下建筑物的防渗漏问题等等。目前,外加剂已成为除水泥、水、砂子、石子以外的第五组成材料,应用越来越广泛。

  一、外加剂的分类

  混凝土外加剂一般根据其主要功能分类:

  1.改善混凝土流变性能的外加剂。主要有减水剂、引气剂、泵送剂等。

  2.调节混凝土凝结硬化性能的外加剂。主要有缓凝剂、速凝剂、早强剂等。

  3.调节混凝土含气量的外加剂。主要有引气剂、加气剂、泡沫剂等。

  4.改善混凝土耐久性的外加剂。主要有引气剂、防水剂、阻锈剂等。

  5.提供混凝土特殊性能的外加剂。主要有防冻剂、膨胀剂、着色剂、引气剂和泵送剂等。

  二、建筑工程中常用的混凝土外加剂品种

  (一)减水剂

  减水剂是指在混凝土坍落度相同的条件下,能减少拌合用水量;或者在混凝土配合比和用水量均不变的情况下,能增加混凝土坍落度的外加剂。根据减水率大小或坍落度增加幅度分为普通减水剂和高效减水剂两大类。此外,尚有复合型减水剂,如引气减水剂,既具有减水作用,同时具有引气作用;早强减水剂,既具有减水作用,又具有提高早期强度作用;缓凝减水剂,同时具有延缓凝结时间的功能等等。

  1.减水剂的主要功能。

  (1)配合比不变时显著提高流动性。

  (2)流动性和水泥用量不变时,减少用水量,降低水灰比,提高强度。

  (3)保持流动性和强度不变时,节约水泥用量,降低成本。

  (4)配置高强高性能混凝土。

  2.减水剂的作用机理。减水剂提高混凝土拌合物流动性的作用机理主要包括分散作用和润滑作用两方而。减水剂实际上为一种表面活性剂,长分子链的一端易溶于水——亲水基,另一端难溶于水——憎水基,如图4-17所示。

图4-17 表面活性剂(减水剂)                           图4-18 减水剂作用机理示意图

(1)分散作用:水泥加水拌合后,由于水泥颗粒分子引力的作用,使水泥浆形成絮凝结构,使10%~30%的拌合水被包裹在水泥颗粒之中,不能参与自由流动和润滑作用,从而影响了混凝土拌合物的流动性(如图4-18a)。当加入减水剂后,由于减水剂分子能定向吸附于水泥颗粒表面,使水泥颗粒表面带有同一种电荷(通常为负电荷),形成静电排斥作用,促使水泥颗粒相互分散,絮凝结构破坏,释放出被包裹部分水,参与流动,从而有效地增加混凝土拌合物的流动性(如图4-18b)。

  (2)润滑作用:减水剂中的亲水基极性很强,因此水泥颗粒表面的减水剂吸附膜能与水分子形成一层稳定的溶剂化水膜(图4-18c),这层水膜具有很好的润滑作用,能有效降低水泥颗粒间的滑动阻力,从而使混凝土流动性进一步提高。

  3. 常用减水剂品种。

  (1)木质素系减水剂:木素质系减水剂主要有木质素磺酸钙(简称木钙,代号MG),木质素磺酸钠(木钠)和木质素磺酸镁(木镁)三大类。工程上最常使用的为木钙。

  MG是由生产纸浆的木质废液,经中和发酵、脱糖、浓缩、喷雾干燥而制成的棕黄色粉末。

  MG属缓凝引气型减水剂,掺量拟控制在0.2%~0.3%之间,超掺有可能导致数天或数十天不凝结,并影响强度和施工进度,严重时导致工程质量事故。

  MG的减水率约为10%,保持流动性不变,可提高混凝土强度8%~10%;若不减水则可增大混凝土坍落度约80~100mm;若保持和易性与强度不变时,可节约水泥5%~10%;

  MG主要适用于夏季混凝土施工、滑模施工、大体积混凝土和泵送混凝土施工,也可用于一般混凝土工程。

  MG不宜用于蒸汽养护混凝土制品和工程。

  (2)萘磺酸盐系减水剂:萘磺酸盐系减水剂简称萘系减水剂,它是以工业萘或由煤焦油中分馏出含萘的同系物经分馏为原料,经磺化、缩合等一系列复杂的工艺而制成的棕黄色粉末或液体。其主要成分为β—萘磺酸盐甲醛缩合物。品种很多,如FDN、NNO、NF、MF、UNF、XP、SN-Ⅱ、建1、NHJ等等。

  萘系减水剂多数为非引气型高效减水剂,适宜掺量为0.5%~1.2%,减水率可达15%~30%,相应地可提高28天强度10%以上,或节约水泥10%~20%。

  萘系减水剂对钢筋无锈蚀作用,具有早强功能。但混凝土的坍落度损失较大,故实际生产的萘系减水剂,极大多数为复合型的,通常与缓凝剂或引气剂复合。

  萘系减水剂主要适用于配制高强、早强、流态和蒸养混凝土制品和工程,也可用于一般工程。

  (3)树脂系减水剂:树脂系减水剂为磺化三聚氰胺甲醛树脂减水剂,通常称为密胺树脂系减水剂。主要以三聚氰胺、甲醛和亚硫酸钠为原料,经磺化、缩聚等工艺生产而成的棕色液体。最常用的有SM树脂减水剂。

  SM为非引气型早强高效减水剂,性能优于萘系减水剂,但目前价格较高,适宜掺量0.5%~2.0%,减水率可达20%以上,1天强度提高一倍以上,7天强度可达基准28天强度,长期强度也能提高,且可显著提高混凝土的抗渗、抗冻性和弹性模量。

  掺SM减水剂的混凝土粘聚性较大,可泵性较差,且坍落度经时损失也较大。目前主要用于配制高强混凝土、早强混凝土、流态混凝土、蒸汽养护混凝土和铝酸盐水泥耐火混凝土等。

  (4)糖蜜类减水剂:糖蜜类减水剂是以制糖业的糖渣和废蜜为原料,经石灰中和处理而成的棕色粉末或液体。国产品种主要有3FG、TF、ST等。

  糖蜜减水剂与MG减水剂性能基本相同,但缓凝作用比MG强,故通常作为缓凝剂使用。适宜掺量0.2%~0.3%,减水率10%左右。主要用于大体积混凝土、大坝混凝土和有缓凝要求的混凝土工程。

  (5)复合减水剂:单一减水剂往往很难满足不同工程性质和不同施工条件的要求,因此,减水剂研究和生产中往往复合各种其他外加剂,组成早强减水剂、缓凝减水剂、引气减水剂、缓凝引气减水剂等等。随着工程建设和混凝土技术进步的需要,各种新型多功能复合减水剂正在不断研制生产中,如2~3h内无坍落度损失的保塑高效减水剂等,这一类外加剂主要有:聚羧酸盐与改性木质素的复合物、带磺酸端基的聚羧酸多元聚合物、芳香族氨基磺酸系高分子化合物、改性羟基衍生物与烷基芳香磺酸盐的复合物、萘磺酸甲醛缩合物与木钙等的复合物、三聚氰胺甲醛缩合物与木钙等的复合物。

  其它减水剂新品种还有以甲基萘为原料的聚次甲基甲基萘磺酸钠减水剂;以古马隆为原料的氧茚树脂磺酸钠减水剂;胺基磺酸盐系高效减水剂;丙烯酸酯或醋酸乙烯的接枝共聚物系高效减水剂;聚羧酸醚系与交联聚合物的复合物系高效减水剂;顺丁烯二酸衍生共聚物系高效减水剂;聚羧酸系高分子聚合物系减水剂等。

  (二)早强剂

  早强剂是指能加速混凝土早期强度发展的外加剂。主要作用机理是加速水泥水化速度,加速水化产物的早期结晶和沉淀。主要功能是缩短混凝土施工养护期,加快施工进度,提高模板的周转率。主要适用于有早强要求的混凝土工程及低温、负温施工混凝土、有防冻要求的混凝土、预制构件、蒸汽养护等等。早强剂的主要品种有氯盐、硫酸盐和有机胺三大类,但更多使用的是它们的复合早强剂。

  1.氯化钙早强剂。氯盐类早强剂主要有CaCl2、NaCl、KCl、AlCl3和FeCl3等。工程上最常用的是CaCl2,为白色粉末,适宜掺量0.5%~3%。由于Cl-对钢筋有腐蚀作用,故钢筋混凝土中掺量应控制在1%以内。CaCl2早强剂能使混凝土3天强度提高50%~{bfb},7天强度提高20%~40%,但后期强度不一定提高,甚至可能低于基准混凝土。此外,氯盐类早强剂对混凝土耐久性有一定影响,因此CaCl2早强剂及氯盐复合早强剂不得在下列工程中使用:

  (1)环境相对湿度大于8%、水位升降区、露天结构或经常受水淋的结构。主要是防止泛卤。

  (2)镀锌钢材或铝铁相接触部位及有外露钢筋埋件而无防护措施的结构。

  (3)含有酸碱或硫酸盐侵蚀介质中使用的结构。

  (4)环境温度高于60℃的结构。

  (5)使用冷拉钢筋或冷拔低碳钢丝的结构。

  (6)给排水构筑物、薄壁构件、中级和重级吊车、屋架、落锤或锻锤基础。

  (7)预应力混凝土结构。

  (8)含有活性骨料的混凝土结构。

  (9)电力设施系统混凝土结构。

  此外,为xxCaCl2对钢筋的锈蚀作用,通常要求与阻锈剂亚硝酸钠复合使用。

  2.硫酸盐类早强剂。硫酸盐类早强剂主要有硫酸钠(即元明粉,俗称芒硝)、硫代硫酸钠、硫酸钙、硫酸铝及硫酸铝钾(即明矾)等。建筑工程中最常用的为硫酸钠早强剂。

  硫酸钠为白色粉末,适宜掺量为0.5%~2.0%;早xx果不及CaCl2。对矿渣水泥混凝土早xx果较显著,但后期强度略有下降。硫酸钠早强剂在预应力混凝土结构中的掺量不得大于1%;潮湿环境中的钢筋混凝土结构中掺量不得大于1.5%;严格控制{zd0}掺量,超掺可导致混凝土后期膨胀开裂,强度下降;混凝土表面起“白霜”,影响外观和表面装饰。此外,硫酸钠早强剂不得用于下列工程:

  (1)与镀锌钢材或铝铁相接触部位的结构及外露钢筋预埋件而无防护措施的结构。

  (2)使用直流电源的工厂及电气化运输设施的钢筋混凝土结构。

  (3)含有活性骨料的混凝土结构。

  3.有机胺类早强剂。有机胺类早强剂主要有三乙醇胺、三异醇胺等。工程上最常用的为三乙醇胺。三乙醇胺为无色或淡黄色油状液体,呈碱性,易溶于水。三乙醇胺的掺量极微,一般为水泥重的0.02%~0.05%,虽然早xx果不及CaCl2,但后期强度不下降并略有提高,且无其他影响混凝土耐久性的不利作用。但掺量不宜超过0.1%,否则可能导致混凝土后期强度下降。掺用时可将三乙醇胺先用水按一定比例稀释,以便于准确计量。此外,为改善三乙醇胺的早xx果,通常与其他早强剂复合使用。

  4.复合早强剂。为了克服单一早强剂存在的各种不足,发挥各自特点,通常将三乙醇胺、硫酸钠、氯化钙、氯化钠、石膏及其他外加剂复配组成复合早强剂效果大大改善,有时可产生超叠加作用。常用配方有:

  (1)三乙醇胺0.02%~0.05%+NaCl0.5%。

  (2)三乙醇胺0.02%~0.05%+NaCl0.3~0.5%+亚硝酸钠1%~2%。

  (3)三乙醇胺0.02%~0.05%+生石膏2%+亚硝酸钠1%。

  (4)硫酸钠+亚硝酸钠+氯化钙+氯化钠=(1%~1.5%)+(1%~3%)+(0.3%~0.5%)+(0.3%~0.5%)。

  (5)硫酸钠+NaCl=(0.5%~1.5%)+(0.3%~0.5%)。

  (6)硫酸钠+亚硝酸钠=(0.5%~1.5%)+1.0%。

  (7)硫酸钠+三乙醇胺=(0.5%~1.5%)+0.05%。

  (8)硫酸钠+三乙醇胺+石膏=(1%~1.5%)+2%+(0.03%~0.05%)。

  (9)CaCl2+亚硝酸钠=(0.5%~3.5%)+1%。

第六节    混凝土的质量检验和评定

  一、混凝土质量波动的原因

  在混凝土施工过程中,原材料、施工养护、试验条件、气候因素的变化,均可能造成混凝土质量的波动,影响到混凝土的和易性、强度及耐久性。由于强度是混凝土的主要技术指标,其他性能可从强度得到间接反映,故以强度为例分析波动的因素。

  (一)原材料的质量波动

  原材料的质量波动主要有:砂细度模数和级配的波动;粗骨料{zd0}粒径和级配的波动;超逊径含量的波动;骨料含泥量的波动;骨料含水量的波动;水泥强度(不同批或不同厂家的实际强度可能不同)的波动;外加剂质量的波动(如液体材料的含固量、减水剂的减水率等)等等。所有这些质量波动,均将影响混凝土的强度。在现场施工或预拌工厂生产混凝土时,必须对原材料的质量加以严格控制,及时检测并加以调整,尽可能减少原材料质量波动对混凝土质量的影响。

  (二)施工养护引起的混凝土质量波动

  混凝土的质量波动与施工养护有着十分紧密的关系。如混凝土搅拌时间长短;计量时未根据砂石含水量变动及时调整配合比;运输时间过长引起分层、析水;振捣时间过长或不足;浇水养护时间,或者未能根据气温和湿度变化及时调整保温保湿措施等等。

  (三)试验条件变化引起的混凝土质量波动

  试验条件的变化主要指取样代表性,成型质量(特别是不同人员操作时),试件的养护条件变化,试验机自身误差以及试验人员操作的熟练程度等等。

  二、混凝土质量(强度)波动的规律

  在正常的原材料供应和施工条件下,混凝土的强度有时偏高,有时偏低,但总是在配制强度的附近波动,质量控制越严,施工管理水平越高,则波动的幅度越小;反之,则波动的幅度越大。通过大量的数理统计分析和工程实践证明,混凝土的质量波动符合正态分布规律,正态分布曲线见图4-19。

图4-19 正态分布曲线

正态分布的特点:

  1.曲线形态呈钟型,在对称轴的两侧曲线上各有一个拐点。拐点至对称轴的距离等于1个标准差 。

  2.曲线以平均强度为对称轴两边对称。即小于平均强度和大于平均强度出现的概率相等。平均强度值附近的概率(峰值){zg}。离对称轴越远,出现的概率越小。

  3.曲线与横座标之间围成的面积为总概率,即{bfb}。

  4.曲线越窄、越高,相应的标准差值(拐点离对称距离)也越小,表明强度越集中于平均强度附近,混凝土匀质性好,质量波动小,施工管理水平高。若曲线宽且矮,相应的标准差越大,说明强度离散大、匀质性差、施工管理水平差。因此从概率分布曲线可以比较直观地分析混凝土质量波动的情况。

  三、混凝土强度的匀质性评定

  混凝土强度的均匀性,通常采用数理统计方法加以评定,主要评定参数有:

(一)强度平均值

混凝土强度平均值按下式计算:

                (4-17)

式中,N为该批混凝土试件立方体抗压强度的总组数; 为第i组试件的强度值。理论上,平均强度 与该批混凝土的配制强度相等,它只反映该批混凝土强度的总平均值,而不能反映混凝土强度的波动情况。例如平均强度20MPa,可以由15 MPa、20 MPa、25MPa求得,也可以由18 MPa、20 MPa、22MPa求得,虽然平均值相等,但它们的均匀性显然后者优于前者。

  (二)标准差

  混凝土强度标准差按下式计算:

                             (4-18)

由正态分布曲线可知,标准差在数值上等于拐点至对称轴的距离。其值越小,反映混凝土质量波动越小,均匀性越好。对平均强度相同的混凝土而言,标准差 能确切反映混凝土质量的均匀性,但当平均强度不等时,并不确切。例如平均强度分别为20MPa和50MPa的混凝土,当 均等于5MPa时,对前者来说波动已很大,而对后者来说波动并不算大。因此,对不同强度等级的混凝土单用标准差值尚难以评判其匀质性,宜采用变异系数加以评定。

  (三)变异系数Cv

  变异系数Cv根据下式计算:

                                      (4-19)

变异系数亦即为标准差 与平均强度 的比值,实际上反映相对于平均强度而言的变异程度。其值越小,说明混凝土质量越均匀,波动越小。如上例中,前者的Cv=5/20=0.25;后者的Cv=5/50=0.1。显而易见,后者质量均匀性好,施工管理水平高。根据GBJ107—87中规定,混凝土的生产质量水平,可根据不同强度等级,在统计同期内混凝土强度的标准差和试件强度不低于设计等级的百分率来评定。并将混凝土生产单位质量管理水平划分为“优良”、“一般”及“差”三个等级。见表4-20。

表4-20 混凝土生产质量水平

生产质量水平

优良

一般

评定指标

强度等级生产单位

<C20

≥C20

<C20

≥C20

<C20

≥C20

混凝土强度标准差σ(MPa)

预拌混凝土和预制混凝土构件厂

≤3.0

≤3.5

≤4.0

≤5.0

>4.0

>5.0

集中搅拌混凝土的施工现场

≤3.5

≤4.0

≤4.5

≤5.5

>4.5

>5.5

强度等于或高于要求强度等级的百分率P(%)

预拌混凝土厂和预制构件厂及集中搅拌的施工现场

≥95

≥85

≤85

(四)强度保证率(P%)

  根据数理统计的概念,强度保证率指混凝土强度总体中大于设计强度等级的概率,亦即混凝土强度大于设计等级的组数占总组数的百分率。可根据正态分布的概率函数计算求得:

                         (4-20)

式中:

P——强度保证率;

t——概率度,或称为保证率系数,根据下式计算:

                     (4-21)

式中:

——混凝土设计强度等级。

  根据t值,可计算强度保证率P。由于计算比较复杂,一般可根据表4-21直接查取P值。

表4-21 不同t值的强度保证率P值

t

0.00

0.50

0.80

0.84

1.00

1.04

1.20

1.28

1.40

1.50

1.60

P(%)

50.0

69.2

78.8

80.0

84.1

85.1

88.5

90.0

91.9

93.5

94.5

t

1.645

1.70

1.75

1.81

1.88

1.96

2.00

2.05

2.33

2.50

3.00

P(%)

95.0

95.5

96.0

96.5

97.0

97.5

97.7

98.0

99.0

99.4

99.87

(五)混凝土的配制强度

  从上述分析可知,如果混凝土的平均强度与设计强度等级相等,强度保证率系数t=0,此时保证率为50%,亦即只有50%的混凝土强度大于等于设计强度等级,工程质量难以保证。因此,必须适当提高混凝土的配制强度,以提高保证率。这里指的配制强度实际上等于混凝土的平均强度。根据我国JGJ55—2000的规定,混凝土强度保证率必须达到95%以上,此时对应的保证率系数t=1.645,由下式得:

                (4-22)

式中:

——混凝土的配制强度(MPa);

——当生产单位或施工单位具有统计资料时,可根据实际情况自行控制取值,但强度等级小于等于C25时,不应小于2.5MPa;当强度等级≥C30时,不应小于3.0 MPa;当无统计资料和经验时,可参考下表4-22取值。

四、混凝土强度检验评定标准

  1.当混凝土的生产条件在较长时间内能保持一致,且同一品种混凝土的强度变异性能保持稳定时,应由连续的三组试件代表一个验收批,其强度应同时符合下列要求:

                                                                            (4-23)

                       (4-24)

当混凝土强度等级不高于C20时,尚应符合下式要求:

                               (4-25)

       当混凝土强度等级高于C20时,尚应符合下式要求:

                                        (4-26)

    式中:

——同一验收批混凝土强度的平均值(N/mm2);

——设计的混凝土强度的标准值(N/mm2);

——验收批混凝土强度的标准差(N/mm2);

——同一验收批混凝土强度的最小值(N/mm2)。

验收批混凝土强度的标准差,应根据前一检验期内同一品种混凝土试件的强度数据,按下式确定:

                                       (4-27)

       式中:

——前一检验期内第i验收批混凝土试件中强度的{zd0}值与最小值之差;

m——前一检验期内验收批总批数。

  2.当混凝土的生产条件不能满足上述条件的规定时,或在前一检验期内的同一品种混凝土没有足够的强度数据用以确定验收批混凝土强度标准差时,应由不少于10组的试件代表一个验收批,其强度应同时符合下列要求:

                                         (4-28)

                                                (4-29)

式中:

——验收批混凝土强度的标准差(N/mm2),当 的计算值小于0.06 时,取 =0.06 ;

——合格判定系数。按下表取值。

3.对零星生产的预制构件或现场搅拌批量不大的混凝土,可采用非统计方法评定,验收批强度必须同时符合下列要求:

                                                  (4-30)

                                                  (4-31)    

 式中:

——验收批混凝土强度的标准差(N/mm2),当 的计算值小于0.06 时,取 =0.06 ;

——合格判定系数。按下表取值。

3.对零星生产的预制构件或现场搅拌批量不大的混凝土,可采用非统计方法评定,验收批强度必须同时符合下列要求:

                        (4-30)

                                   (4-31)

                4.当对混凝土的试件强度代表性有怀疑时,可采用从结构、构件中钻取芯样或其他非破损检验方法,对结构、构件中的混凝土强度进行推定,作为是否应进行处理的依据。

郑重声明:资讯 【混凝土基础知识培训(3)】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——