分子晶体和原子晶体
1. 晶体与非晶体
2. 晶胞
3. 分子晶体
4. 原子晶体
二. 重点、难点
1. 通过实验探究理解晶体与非晶体的差异。
2. 了解区别晶体与非晶体的方法,认识化学的实用价值,增强学习化学的兴趣。
3. 了解分子晶体的组成粒子、结构模型和结构特点及其性质的一般特点。
4. 理解分子间作用力和氢键对物质物理性质的影响,知道一些常见的属于分子晶体的物质类别。
5. 掌握原子晶体的概念,能够区分原子晶体和分子晶体。
6. 了解金刚石等典型原子晶体的结构特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。
三. 教学过程
(一)晶体与非晶体
1、晶体的定义:晶体是由原子或原子团、离子或分子在空间按一定规律周期性地重复排列构成的固体物质。非晶体是原子、分子或离子无规则地堆积在一起所形成的固体。
(1)一种物质是否是晶体是由其内部结构决定的,而非由外观判断。
(2)晶体内部的原子有规律地排列,且外观为多面体,为固体物质。
(3)周期性是晶体结构最基本的特征。
2、晶体与非晶体的本质差异
(1)自范性:晶体能自发性地呈现多面体外形的性质。
(2)晶体自范性的本质:是晶体中粒子微观空间里呈现周期性地有序排列的宏观表象。
(3)晶体自范性的条件之一:生长速率适当。如熔融态的二氧化硅,快速地冷却得到玛瑙,而缓慢冷却得到水晶。
3、晶体形成的一段途径:
(1)熔融态物质凝固。如从熔融态结晶出来硫晶体。
(2)气态物质冷却不经液态直接凝固(凝华)。如凝华得到的碘晶体。
(3)溶质从溶液中析出。如从硫酸铜饱和溶液中析出的硫酸铜晶体。
4、晶体的特点:
(1)均匀性
(2)各向异性
(3)自范性
(4)有明显确定的熔点
(5)有特定的对称性
(6)使X射线产生衍射
(二)晶胞
1、晶胞的定义:晶体结构中的基本单元叫晶胞。
(1)晶胞是从晶体结构中截取出来的大小、形状xx相同的平行六面体。晶胞代表整个晶体,无数个晶胞堆积起来,则得到晶体。
(2)整个晶体是由晶胞“无隙(相邻晶胞之间没有任何间隙)并置(所有晶胞都是平行排列的,取向相同)”堆砌而成。晶胞的无隙并置体现了晶体的各向异性(强度、导热、光学性质)和紧密堆积(紧密堆积指由无方向性的金属键、离子键和范德华力等结合的晶体中,原子、离子或分子等微观粒子总是趋向于相互配位数高,能充分利用空间的堆积密度{zd0}的那些结构。)。
(3)晶胞内微粒的组成反映整个晶体的组成,求出晶胞中微粒的个数比就能写出晶体的化学式。
2、晶胞中原子个数的计算方法:
(三)分子晶体
1、定义:分子间以分子间作用力(范德华力,氢键)相结合的晶体叫分子晶体。
(1)构成分子晶体的粒子是分子;
(2)分子晶体的粒子间的相互作用是范德华力;
(3)范德华力远小于化学键的作用;
(4)分子晶体熔化破坏的是分子间作用力。
2、典型的分子晶体
(1)所有非金属氢化物:H2O、H2S、NH3、CH4、HX
(2)部分非金属单质:X2、 N2、 O2、 H2、S8、P4、C60
(3)部分非金属氧化物:CO2、SO2、N2O4,P4O6, P4O10
(4)几乎所有的酸:H2SO4、HNO3、H3PO4
(5)大多数有机物:乙醇,冰醋酸,蔗糖
3、分子晶体的物理特性:
某些分子晶体的熔点
由于范德华力很弱,所以分子晶体一般具有:
(1)较低的熔点和沸点;
(2)较小的硬度;
(3)一般都是绝缘体,熔融状态也不导电。
【思考1】为何分子晶体的硬度小,熔沸点低?
因为构成晶体的微粒是分子,分子之间以分子间作用力(主要是范德华力)相结合,范德华力远小于化学键的作用。
【思考2】是不是在分子晶体中分子间只存在范德华力?
不对,分子间氢键也是一种分子间作用力,如冰中就同时存在着范德华力和氢键。
【思考3】为何干冰的熔沸点比冰低,密度却比冰大?
4、分子晶体的结构特征
|
组成微粒 |
微粒间作用 |
堆积方式 |
熔沸点比较 |
密度比较 |
冰 |
水分子 |
范德华力和氢键 |
每个分子周围有4个紧邻的分子 |
较高 |
较小 |
干冰 |
CO2分子 |
范德华力 |
每个分子周围有12个紧邻的分子 |
较低 |
较大 |
大多数分子晶体结构有如下特征:
(1)如果分子间作用力只是范德华力。以一个分子为中心,其周围通常可以有几个紧邻的分子。如O2、C60、CO2,我们把这一特征叫做分子紧密堆积。
(2)如果分子间除范德华力外还存在着氢键,分子就不会采取紧密堆积的方式。如在冰的晶体中,每个水分子周围只有4个紧邻的水分子,形成正四面体。氢键不是化学键,比共价键弱得多却跟共价键一样具有方向性,而氢键的存在迫使四面体中心的每个水分子与四面体顶角方向的4个相邻水分子相互吸引,这一排列使冰晶体中空间利用率不高,皆有相当大的空隙使得冰的密度减小。
5、分子晶体熔、沸点高低的比较规律
分子晶体要熔化或汽化都需要克服分子间的作用力。分子间作用力越大,物质熔化和汽化时需要的能量就越多,物质的熔、沸点就越高。因此,比较分子晶体的熔、沸点高低,实际上就是比较分子间作用力(包括范力和氢键)的大小。
(1)组成和结构相似的物质,相对分子质量越大,范德华力越大,熔沸点越高。如:O2>N2,HI>HBr>HCl。
(2)分子量相等或相近,极性分子的范德华力大,熔沸点高,如CO>N2
(3)含有氢键的,熔沸点较高。如H2O>H2Te>H2Se>H2S,HF>HCl,NH3>PH3
(4)在烷烃的同分异构体中,一般来说,支链数越多,熔沸点越低。如沸点:正戊烷>异戊烷>新戊烷;芳香烃及其衍生物苯环上的同分异构体一般按照“邻位>间位>对位”的顺序。
已投稿到: |
|
---|