高频电源变压器磁芯的设计原理_电子镇流器技术的空间_百度空间

Remark:香港力高仪器(MIKO-KINGS)在软磁性材料交流测试方面有独特的技术支撑和产品---日本IWATSU SY-8232/8217/8258型B-H交流分析仪,相应的技术应用方案,请联系吴先生: Tel:13423449834 0755-25183472

SY-8258 B-H analyzer

摘要:开关电源正向高频化发展,作为主变压器使用的软磁铁氧体磁芯,从材料性能、尺寸形状等均应作相应改进。本文讨论了磁芯设计中应考虑的通过功率、性能因子、热阻系数等参数,并提出了降低材料高频损耗的微观设计方法。

    电子信息产业的迅速发展,对高频开关式电源不断提出新的要求。据报导,全球开关电源市场规模已超过100亿美元。通信、计算机和消费电子是开关电源的三大主力市场。庞大的开关电源市场主要由AC/DC和DC/DC开关电源两部分组成。据预测,AC/DC开关电源全球销售收入将从1999年的91亿美元增加到2004年的122亿美元,年平均增长率为5.9%。低功率的AC/DC(0~300W)将面向增长平衡的消费电子和计算机市场;大功率的AC/DC电源(750~1500W)将面向增长强劲的电信市场。DC/DC电源约占整个开关电源市场的30%,但计算机与通信技术的快速融合,带动了DC/DC模块式电源的迅速增长,预计今后几年,DC/DC电源模块增长速度将超过AC/DC电源,如有人估计,中国今后五年,DC/DC电源模块市场年增长将达15%,增长主要是在电信部门。开关式电源技术发展趋势是高密度、高效率、低噪声,以及表面贴装化。无论是AC/DC或 DC/DC电源,除了功率晶体管外,由软磁铁氧体磁芯制成的主变压器、扼流圈及其它电感器(如抗噪声滤波器)是极重要的元件,其磁性能和尺寸直接关系到电源的转换效率和功率密度等。在变压器设计中,主要包括绕组设计和磁芯设计。本文拟重点讨论涉及主要变压器磁芯设计中应考虑的通过功率、性能因子、热阻等参数,并对降低磁芯总损耗提出了材料微观设计应考虑的方法。
    为了满足开关电源提高效率和减小尺寸重量的要求,需要一种高磁通密度和高频低损耗的变压器磁芯。虽然有高性能的非晶态软磁合金竞争,但从性能价格比考虑,软磁铁氧体材料仍是{zj0}的选择;特别在100kHz到1MHz的高频领域,新的低损耗的高频功率铁氧体材料,更有其独特的优势。为了{zd0}程度地利用磁芯,对于较大功率运行条件下的软磁铁氧体材料,在高温工作范围(如80~100℃),应是有以下最主要的磁特性:
    新发布的“软磁铁氧体材料分类”行业标准(等同IEC1332-1995),将高磁通密度应用的功率铁氧体材料分为五类,见表1。每类铁氧体材料除了对振幅磁导率和功率损耗提出要求外,还提出了“性能因子”参数(该参数将在下面进一步叙述)。从PW1~PW5类别,其适用工作频率是逐步提高的,如PW1材料,适用频率为15~100kHz,主要应用于回
    这里,我们重点讨论(fBmaxAe)参数(暂不讨论绕组设计参数Wd)。增大磁芯尺寸(增大Ae)可提高变压器通过功率,但当前开关电源的目标是在给定通过功率下要减小尺寸和重量。假定固定温升,对一个给定尺寸的磁芯,通过功率近似正比于频率。图1示出变压器可传输功率Pth与频率f的关系。提高开关频率除了要应用快速晶体管以外,还受其它电路影响所限制,如电压和电流的快速改变,在开关电路中产生扩大的谐波谱线,造成无线电频率干扰,电源的辐射。对变压器磁芯来说,提高工作频率则要求改进高频磁芯损耗。图1中N67材料(西门子公司)比N27材料有更低的磁芯损耗,允许更大的磁通密度偏移ΔB,因而变压器可传输更大的功率。磁芯总损耗PL与工作频率f及工作磁通B的关系由下式表示:
    在这里,必须注意对不等截面磁芯(如E型磁芯),在最小横截面Amin处有较高的磁
    铁氧体磁芯制成的变压器,其通过功率直接正比于工作频率f和{zd0}可允许磁通密度Bmax的乘积(见公式1)。很明显,对传输相同功率来说,高的(fBmax)乘积允许小的磁芯体积;反之,相同磁芯尺寸的变压器,采用高(fBmax)乘积的铁氧体材料,可传输更大的功率。我们将此乘积称为“性能因子”,这是与铁氧体材料有关的参数,良好的高频功率铁氧体显示出高的(fBmax)值。图3示出德国西门子公司几种铁氧体材料性能因子(PF)与频率关系,功率损耗密度定为300mW/cm3(100℃),可用来度量可能的通过功率。可以看到,经改进过的H49i材料在900kHz时达到{zd0}的(fBmax)乘积为37000H2T,比原来生产的H49材料有更高的值,而N59材料则可使用到f=1MHz以上频率。
    由上式可见,对电源变压器用的铁氧体材料,必须具有低的功率损耗和高的热传导系数。实际测量表明,图5所示的N67材料显示高的热导性。从微观结构考虑,高的烧结密
    这里,∮BdH等于{zd0}磁通B下测得的直流磁滞回线的等值能。对于工作在频率100khz以下的功率铁氧体磁芯,降低磁滞损耗是最重要的。为获得低损耗,要选择铁氧体成分具有最小矫顽力Hc和最小各向异性常数K,理想情况是各向异性补偿点(即K≈0)位于变压器工作温度(约80~100℃)。另外,此成分应有低的磁致伸缩常数λ,工艺上要避免内外应力和夹杂物。采用大而均匀晶粒是有利的,因为Hc∞D-1(D是晶粒尺寸)。
这里,Ce是尺寸常数,ρ是在测量频率f时的电阻率。
    随着开关电源小型化和工作频率的提高,由于Pe∞f2,因而降低涡流损耗对高频电源变压器更为重要。随着频率提高,涡流损耗在总损耗中所占比例逐步增大,当工作频率达200~500kHz时,涡流损耗常常已占支配地位。从图7所示R2KB1材料磁芯总损耗(包括磁滞和涡流损耗)与频率关系实测曲线,可得到证明。减小涡流损耗主要是提高多晶铁氧体的电阻率。从材料微观结构考虑,应用均匀的小晶粒,以及同电阻的晶界和晶粒;因为小晶粒具有{zd0}晶界表面而增大电阻率,而附加CaO+SiO2,或者Nb2O5、ZrO2和Ta2O5匀对增高电阻率有益。

    最近发现,当电源变压器磁芯工作达MHz频段时,剩余损耗已占支配地位,采用细晶粒铁氧体已成功地缩小了此损耗的贡献。对MnZn铁氧体来说,在MHz频率出现铁磁谐振,形成了铁氧体的损耗。最近有人提出,当铁氧体的磁导率μi随晶粒尺寸减小而降低时,Snoek定律仍是有效的,也就是说,细晶粒材料显示出高的谐振频率,因此可用于更高频率。另外,对晶粒尺寸减小到纳米级的铁氧体材料研究表明,在此频段还应考虑晶粒内畴壁损耗。

  

1 ETD磁性可传输功率Pth与频率关系          2 磁损与频率关系
(Siemens)-N67......N27

       

3 材料性能因子与频率关系(Siemens)       4 性能因子{zd0}值频率与d2/ρ之间关系
(100°C,功耗300mW/cm3)     

   

5 不同铁氧体材料的RM14磁芯温升与功率损耗       6 不同磁芯形状、尺寸、重量
关系(Siemens) (环境温度23°C)                        与变压器热阻关系




郑重声明:资讯 【高频电源变压器磁芯的设计原理_电子镇流器技术的空间_百度空间】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——