DSP的设计过程- 其他DSP系列- DSP交流网DSP学习{dy}论坛DSP技术应用与 ...
DSP硬件设计包括:硬件方案设计、DSP及周边器件选型、原理图设计、PCB设计及仿真、硬件调试等。
一、系统资源规划
  硬件设计的前提需要做的一件事是对整个系统的资源进行规划,最终得到系统的资源分配表,即Memory Map。通过资源分配表我们可以清晰地看到程序空间、数据空间、图像输入口等资源的地址。经过对系统资源的规划,我们的硬件设计才能够有整体的规划,不然设计出来的原理图就是非常盲目的“无源之水”。
二、设计
  DSP的芯片厂家在设计出每一种DSP芯片时一般都提供了相应的EVM(评估板)参考原理图设计,大家可以通过网络免费下载,或通过购买原装的EVM板得到。
  硬件设计时,应重点注意以下几点。
  (1)时钟电路。DSP时钟可由外部提供,也可由板上的晶振提供。但一般DSP系统中经常使用外部时钟输入,因为使用外部时钟时,时钟的精度高、稳定性好、使用方便。由于DSP工作是以时钟为基准,如果时钟质量不高,那么系统的可靠性、稳定性就很难保证。因此,若采用外部时钟,选择晶振时应对其稳定性、毛刺做全面的检验,以便DSP系统可靠地工作。
   (2)复位电路。应同时设计上电复位电路和人工复位电路,在系统运行中出现故障时可方便地人工复位。对于复位电路,一方面应确保复位低电平时间足够长(一般需要20ms以上),保证DSP可靠复位;另一方面应保证稳定性良好,防止DSP误复位。
  (3)在DSP电路中,对所有的输入信号必须有明确的处理,不能悬浮或置之不理。尤其要注意的是:若设计中没用到不可屏蔽硬件中断NMI,则硬件设计时应确保将其相应引脚拉高,否则程序运行时会出现不可预料的结果;若设计中用到NMI,也应在程序正常执行阶段置其相应引脚为高电平。
三、
  数字器件正朝着高速、低耗、小体积、高抗干扰性的方向发展,这一发展趋势对印刷电路板的设计提出了很多新要求。作者根据多年在硬件设计工作中的经验,总结一些高频布线的技巧,供大家参考。
  (1)高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。
  (2)高速电路器件管脚间的引线弯折越少越好。高频电路布线的引线{zh0}采用全直线,需要转折,可用45°折线或圆弧转折,满足这一要求可以减少高频信号对外的发射和相互间的耦合。
  (3)高频电路器件管脚间的引线越短越好。
  (4)高频电路器件管脚间的引线层间交替越少越好。所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好,据测,一个过孔可带来约0.5 pF的分布电容,减少过孔数能显著提高速度。
  (5)高频电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅度减少干扰。同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。
  (6)对特别重要的信号线或局部单元实施地线包围的措施,即绘制所选对象的外轮廓线。利用此功能,可以自动地对所选定的重要信号线进行所谓的“包地”处理,当然,把此功能用于时钟等单元局部进行包地处理对高速系统也将非常有益。
  (7)各类信号走线不能形成环路,地线也不能形成电流环路。
  (8)每个集成电路块的附近应设置一个高频去耦电容。
  (9)模拟地线、数字地线等接往公共地线时要用高频扼流环节。在实际装配高频扼流环节时用的往往是中心孔穿有导线的高频铁氧体磁珠,在电路原理图上对它一般不予表达,由此形成的网络表(netlist)就不包含这类元件,布线时就会因此而忽略它的存在。针对此现实,可在原理图中把它当做电感,在PCB元件库中单独为它定义一个元件封装,布线前把它手工移动到靠近公共地线汇合点的合适位置上。
  (10)模拟电路与数字电路应分开布置,独立布线后应单点连接电源和地,避免相互干扰。
  (11)DSP、片外程序存储器和数据存储器接入电源前,应加滤波电容并使其尽量靠近芯片电源引脚,以滤除电源噪声。另外,在DSP与片外程序存储器和数据存储器等关键部分周围建议屏蔽,可减少外界干扰。
  (12)片外程序存储器和数据存储器应尽量靠近DSP芯片放置,同时要合理布局,使数据线和地址线长短基本保持一致,尤其当系统中有多片存储器时要考虑时钟线到各存储器的时钟输入距离相等或可以加单独的可编程时钟驱动芯片。对于DSP系统而言,应选择存取速度与DSP相仿的外部存储器,不然DSP的高速处理能力将不能充分发挥。DSP指令周期为纳秒级,因而DSP硬件系统中最易出现的问题是高频干扰,因此在制作DSP硬件系统的印制电路板(PCB)时,应特别注意对地址线和数据线等重要信号线的布线要做到正确合理。布线时尽量使高频线短而粗,且远离易受干扰的信号线,如模拟信号线等。当DSP周围电路较复杂时,建议将DSP及其时钟电路、复位电路、片外程序存储器、数据存储器制作成最小系统,以减少干扰。
  (13)当本着以上原则,熟练设计工具的使用技巧以后,经过手工布线完成后,高频电路为了提高系统的靠性和可生产性,一般都需要利用高级的PCB仿真软件进行仿真。
四、
  硬件调试时应该注意的一些问题。如在硬件调试前,应先对电路板进行细致的检查,观察有无短路或断路情况(由于DSP的PCB板布线一般较密、较细,这种情况发生的概率还是比较高的)。加电后,应用手感觉是否有些芯片特别热。如果发现有些芯片烫得厉害,需立即掉电重新检查电路。排除故障后,接着就应检查晶体是否振荡,复位是否正确可靠。然后用示波器检查DSP的CLK-OUT1和CLK-OUT2引脚的信号是否正常,若正常则表明DSP本身工作基本正常。
  (1)保证电源的稳定可靠
  在DSP硬件系统调试前,应确保给实验板供电的电源有良好的恒压恒流特性。尤其要注意的是,DSP的入口电压应保持在5.0V±0.05V。电压过低,则通过JTAG接口向Flash写入程序时,会出现错误提示;电压过高,则会损坏DSP芯片。
  (2)利用仿真软件排除硬件故障
  在完成对电路板的检查后,就可通过仿真软件来调试程序。由于仿真时,程序代码下载到目标系统中的片外程序存储器,因而通过仿真软件可以比较容易地检查出一些硬件故障。
  在上电后,若仿真软件调试窗口始终无法调入程序,则有两种可能:① DSP芯片引脚存在断路或短路现象;② DSP 芯片损坏。倘若是{dy}次利用仿真软件调试程序,此时应对实验板断电,仔细检查DSP芯片各引脚的焊接情况。如果软件调试窗口曾正确调入程序,则可能是DSP芯片损坏。此时,可通过检测实验板的整板阻抗进一步判断DSP芯片是否受损。若整板阻抗急剧下降,可将给DSP芯片供电的电源线割断,检测DSP芯片的电阻。
  如果软件调试窗口可调入程序,但调入的程序局部出错,如对片外程序存储器或数据存储器操作的代码变成.word **x,此时可能是片外程序存储器或数据存储器出现故障。应仔细检查存储器是否存在短路或虚焊,若不存在则应进一步判断存储器是否受损。
郑重声明:资讯 【DSP的设计过程- 其他DSP系列- DSP交流网DSP学习{dy}论坛DSP技术应用与 ...】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——