解析几何的产生
近代数学本质上可以说是变量数学。从初等数学发展到近代数学,解析几何的发明是变量数学的{dy}个里程碑。正如恩格斯所说:”数学中的转折点是笛卡儿的变数。”
十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。当时的这个”几何学”实际上指的是数学,就像我国古代”算术”和”数学”是一个意思一样。
笛卡尔的《几何学》共分三卷,{dy}卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和”超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。
(1)解析几何的基本思想
从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种”普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。
具体地说,平面解析几何的基本思想有两个要点:{dy},在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。
解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;
也有人在研究天文、地理的时候,提出了一点位置可由两个”坐标”(经度和纬度)来确定。例如古埃及人和罗马人将坐标观念用于测量的,希腊人用于绘制地图的坐标思想;奥雷姆(法国人,约1320一1382)在14世纪曾试图用图线来表示变量之间的关系。这些都对解析几何的创建产生了很大的影响。但是在明确提出上述两个要点之前,无法用代数方法来研究几何学。笛卡儿解决了贯彻这两个要点的方法问题,那就是建立坐标系。
在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。
费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的”书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。
笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。
(2)解析几何的基本内容
在解析几何中,首先是建立坐标系。如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。在空间坐标系中还有球坐标和柱面坐标。
坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究几何学,通常就叫做解析法。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。
解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。恩格斯对此曾经作过评价”数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……”解析几何的应用
解析几何又分作平面解析几何和空间解析几何。
在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。
在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。
椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。
总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。
运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件”翻译”成代数方程;然后运用代数工具对方程进行研究;{zh1}把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。
坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。
(3)解析几何的意义
解析几何的产生在数学史上具有划时代的意义。
●在数学中引入了变量概念
建立坐标系,把几何曲线和代数方程对应起来实际上就已用到了变量概念:方程无非是两个变量的关系,几何曲线上的点的坐标就是变量在变化过程中所取的值。
●提供了一种解决一般问题的方法
古希腊几何中的许多问题都是个别地解决的,而引入解析几何后就可以用解析方法(代数方法)作一般性的处理。例如几何作图问题就是在有限次使用没有刻度的直尺和圆规的条件下作出所要求的图形的问题,即所谓“尺规作图”。如果能够按条件作出所求图形,则称这个问题为作图可能问题,这时图形叫做可作的;如果作不出所求图形,那么可分为两种情况:一是所求的图形实际不存在,这时,就可说这个问题是不成立的;一是所求的图形是存在的,但只用尺规无法作出,这时,就可说这个问题是作图不可能的。
●为数学思想的发展开辟了新的天地
欧几里得《几何原本》建立了{dy}个数学理论体系,在数学思想发展中占有重要的地位。解析几何的建立则把数学理论推向一个新的高度,为新数学思想的发展开辟了新天地。
首先是数学概念得到进一步概括。例如”曲线”概念,古希腊人只限于能用一些简单工具(直尺售圆规及少数其他机械)作出来的图形。而解析几何则把“曲线”概括为任意的几何图形,只要它们对应的代数方程是由变量 的有限次代数运算所构成的。这样,开辟了用代数方法研究几何问题的新思路。
其次,再一次突破直观的限制,打开了数学发展的新思路。笛卡儿和费马首先建立起来的是二维平面上的点和有序实数对( )之间的对应,按同样的思想,不难得出通过三个坐标轴得出三维空间的点和实数的有序三数组( )之间的对应关系。现实的空间xx于三维,由于解析几何中采用了代数方法,平面上的点对应于有序实数对,空间的点对应着三元有序实数组,那么代数中的四元有序实数组当然可以与此类比,构成一个四维空间,由此类推,提出了高维空间的理论。这是现代数学极重要的思想,开拓了数学的新领域。
●揭示了数学内在的统一性
虽然在欧几里得那里几何和算术(代数)是不加区分的,但他主要是应用后采称之为几何学的方法来处理各种数学问题。16世纪代数学有了较大的发展,但人们把代数和几何严格地区分开来,例如塔尔塔利亚坚持要区别数的运算和几何图形的运算。韦达也认为数的科学和几何量的科学是平行的,但是有区别的,连牛顿也反对把几何和代数混淆起来。这种情况反映了数学的分化和各学科深入发展的需要。
解析几何把几何和代数结合起来,几何概念可用代数方式表示,几何的目标,可通过代数达到;反过来,给代数语言以几何的解释,使代数语言变得直观,易于理解。解析几何是近代统一数学的{dy}次尝试,它符合数学发展的规律,所以它有力地促进了数学理论的发展和数学在科学及实践中的应用