发电机失磁跳闸原因分析及防止对策

发电机失磁跳闸原因分析及防止对策

2010-05-05 08:47:35 阅读6 评论0 字号:

  1 发电机失磁跳闸的典型事例
  (1) 1987年9月14日19:23,发现3号机主励磁机炭刷冒火,电气运行值班人员在处理过程中,由于维护经验不足,调整电刷弹簧压力时将正、负极同时提起,使运行中的发电机励磁电流中断,造成失磁保护动作,3号机出口208开关跳闸。
  (2) 1987年11月28日 ,全厂2,3,4号机组运行,1号机组停运,总负荷280 mw,4号机组带80 mw负荷运行。8:15,4号机励磁系统各表计指示摆动,随之出现“励磁异常”、“强励限制”、“保护动作”等光字。4号机210开关跳闸,励磁调节b柜dzb开关联动,经查低励失步保护动作,励磁回路未发现异常情况。 8:21,将4号机并入系统,当负荷加至80 mw时,4号机再次出现上述现象,210开关跳闸。经分析认为励磁调节器有隐蔽性故障,故启动备用励磁机运行。4号机励磁调节柜停运后,经检查发现a柜综合放大器和电压反馈的r15电阻、c3滤波电容焊点孔位偏移,接头开焊脱落引起反馈电压波形畸变,导致励磁运行参数摆动,造成瞬间失磁。
  (3) 1989年6月29日,1,2,3,4号发电机运行,全厂总出力395 mw。9:20,1号机无功负荷由65 mvar降至0,并出现“强励动作”、“强励限制”、“过负荷”光字,2号机出现“强励动作”、“强励限制”、“过负荷”、“失磁应减载”光字,调整1号机无功负荷把手加不上,急将调节器由“自动”倒为“手动”方式,将无功负荷增加到40 mvar,同时调整2号机无功负荷,使两台机组各参数趋于稳定。经查1号机有“低励失磁”动作信号,由于值班人员精心监盘,反应敏捷,处理果断,避免了一次1号机失磁跳闸事故(同年6月6日曾发生过上述同样的现象,即造成了跳闸)。事后经分析认为电网无功负荷欠额较大,引起发电机无功负荷超过允许值,各机发生互抢无功现象。
  (4) 1989年6年30日,1、2、4号发电机运行,总负荷295 mw,3号机备用。1号机带有功负荷95 mw,无功负荷56 mvar,17:15,1号机无功负荷同时升至80 mvar以上,随之1号机的所有表计指示到零,001mk开关跳闸,出现“保护动作”光字,查系失磁保护动作跳闸。停机后立即检查励磁回路,发现1号机主励磁机失磁开关lmk(系co2-40/02型直流接触器),原设计容量为40 a,实际运行电流达50~60 a,一直处于“过载”工况下运行,久而久之过热造成弹簧压力降低,接触不良,加速过热使其元件老化,触点发热融化将励磁灭磁电阻(zg11-200型)串入运行,使磁场减弱,造成失磁跳闸。
  2 发电机励磁跳闸原因分析
  2.1 归类分析
  1986~1994年11次发电机失磁跳闸事故大致原因列于表1。
 
 


  (1) 从表1可以看出运行人员素质及责任占6次,检修人员素质及责任占4次,设备问题占4次,安装单位占3次。纵观这11次事故的比例可清楚的看到运行人员素质及责任占60%,检修责任占40.4%,设备问题及安装质量各占40%和30%。可见加强运行人员的现场业务培训,提高技能,增强值班人员现场判断、处理事故的能力是当务之急,同时也是尽量避免或减少发电机失磁跳闸事故的重要环节。其它原因占到5次,即总事故的45%,这些原因牵扯面比较大,也较为复杂。其中包括:现场人员的管理、技术管理、有关单位的管理、设计单位及制造单位的技术问题等。
  (2) 从事故发生周期和时间也可较为明显的看到,新投产的设备不论是从设备运行状况和人员责任都有一个转化过程。随着设备运行的逐渐稳定,各个元件参数、定值以及各项技术资料、管理制度的不断修改完善,事故率在逐年减少。再者,事故跳闸时间大多集中在夏季,因夏季西北气候干燥闷热,由于晶体管保护元件易受气温、湿度、环境影响,参数不稳定。每逢夏季加强对晶体管保护的管理、检查、维护也是一个不可忽视的问题。
  2.2 技术分析
   同步发电机在运行过程中,可能会全部或部份失去励磁,其原因大致可分为以下几种:
  (1) 励磁回路开路,励磁绕组断线。如:灭磁开关、接触器误跳闸,磁场变阻器接头接触不良,励磁回路开路,可控硅励磁装置中部份元件老化、开焊、损坏等。
  (2) 励磁绕组长期发热,绝缘损坏接地短路。
  (3) 系统振荡,功率发生严重不平衡,系统吸收大量无功负荷,静稳定遭破坏,发电机组抢无功,原动机系统失灵或反应迟缓引起发电机失去平衡,振荡、失磁跳闸。
  (4) 运行人员误调整,如:调节器运行方式不合理、投退操作开关失误、调整不及时、维护励磁碳刷方法不当等。
  3 预防措施及解决办法
   发电机失磁后,向电网送出的有功功率大大减少,转速迅速增加,同时从电网中吸收大量无功功率,其数值可接 近超过额定容量,因此,造成电网电压下降。当电压降低过大时,会使系统失去稳定,引起电网振荡电压崩溃而导致大面积停电事故。而对发电机本身而言,将使发电机端部铁芯温度过高而损坏(某些结构的转子如:绑线式转子会因过热发生脱焊),轴瓦振动过大损坏。
   为了吸取教训,总结经验,尽量减少避免此类事故的发生,应采取相应的预防措施和解决方法。
  (1) 加强对全员的爱国、爱<

<#--{zx1}日志--> <#--推荐日志--> <#--引用记录--> <#--相关日志--> <#--推荐日志--> <#--推荐阅读--> <#--相关文章 2010.04.29="" by="" yangfan--=""> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构-->
郑重声明:资讯 【发电机失磁跳闸原因分析及防止对策】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——