手机和手持设备中WiMAX、蓝牙和Wi-Fi的共存带来了艰难的技巧挑战,因为它们在相邻无线频带上的发送可能会发生冲突,并严重下降性能。本文推荐的共存机制可以实现WiMAX和蓝牙时钟的同步,时间上共享无线频带(以一种尽可能减小对各自无线链路性能影响的方法)以及使Wi-Fi工作于U-APSD模式,因而有效地解决了这方面的挑战。
从单功能蜂窝电话到具有丰盛衔接功能的各种多模多设备,移动电话的发展非常敏捷。这种发展趋势同时有益于用户、运营商、网络服务供给商和利用开发职员,但对手机OEM商来说却意味着难度越来越高,因为不同的无线协议之间存在着难以处置的干扰问题。比如:
1.蓝牙:这是中端/xx手机中的标配功能,可以供给耳机、笔记本(无线PC modem和/或同步功能)以及打印机等外设的短间隔衔接。
2.Wi-Fi:可以让用户接入互联网,打VoIP电话。
3.WiMax:很快会将与Wi-Fi雷同的功效扩大到更远的间隔,并且性能更加稳固。
手机制作商几年前就认识到,蓝牙和Wi-Fi(2.4GHz频带)的频率非常接近,而且它们的天线靠在一起,再加上两种协定完整不和谐的事实,{zj2}将导致产生故障的严重性能挑战。蓝牙和Wi-Fi芯片组供给商在产品中增添了共存接口,实现了在共享无线频率媒介上的仲裁,以防止冲突和信号劣化,从而有效解决了这一困难。
随着移动WiMax(IEEE802.16e)的推出,OEM又面临新的干扰挑衅,这是由于新的WiMax协定工作在多个频带(在WiMax术语中定义为“模式”),而最常用的是2.3-2.4GHz和2.5-2.7GHz。这种频率区间固然比蓝牙和Wi-Fi之间的大,但仍不足以避免共存问题的产生。
一个典范的使用场所是,用户一边应用蓝牙耳机进行蜂窝通话,一边通过电话的WiMax无线链路下载电子邮件或阅读互联网,这时确保无线接口共存的完善机制就很有必要。假如没有这种机制,话音质量和数据包吞吐量降落将导致用户体验拙劣。由于有越来越多的{zj2}用户应用蓝牙和Wi-Fi配件(如蓝牙耳机,Wi-Fi路由器),因此{zj0}解决计划必需能与已经投进使用的装备一起工作,而不是往修正现有设备。
WiMAX和蓝牙干扰
上述情景将用来剖析从WiMax发射到蓝牙无线链路的干扰模式,并断定其影响。图1所示是一个由蓝牙耳机和带WiMax功能的移动电话组成的系统。蓝牙耳机的发射功率是0dBm。在耳机天线处收到的信号电平是-40dBm。蓝牙规范请求接收器能够处置{zg}为-27dBm的干扰信号。
本例中手机的WiMax发射器工作在2.5-2.7GHz频带。WiMax功放(PA)的输出功率可能高达+25dBm。WiMax和蓝牙发射天线彼此靠得很近,用户的手或手机摆放的表面通常会在它们之间造成10dB的路径损耗。这样一来,在蓝牙带通滤波器(BPF)输入端发生的信号电平为+15dB。BPF必需能够通过高达2.48GHz的频率({zg}的蓝牙跳频),因此无法克制超过3dB的无用WiMax信号,故至少有+12dB的干扰信号被传递到蓝牙低噪放大器(LNA)。
图1:由蓝牙耳机和带WiMax功能的手机构成的通讯体系
假定蓝牙克制才能为-27dBm,那么很显明无法有效克制掉WiMax信号,这样就会发生阻塞。另外,蓝牙LNA输入端如此强的信号可能会超过LNA的{zd0}额定输入功率,{zj2}导致严重的可靠性问题。
为了便于讨论,本文规定“本端”代表使用手机的一方,“远端”代表正在通话的另一方。只要手机的蓝牙接收电路被WiMax发射信号阻塞,远端就会听到“喀喇”声。
WiMax阻塞对本真个影响水平稍低些,由于从手机到耳机存在较高的路径损耗,但对本端端点的干扰也不能被完整疏忽。这种“喀喇”声发生的概率异常的高。假设在以下场所(后文有说明),手机中的蓝牙接收器最多有1/6的时间在用。依据WiMax的使用情形,随着流量的增添,在较高频率处,蓝牙吸收器将会被阻塞。如上所述,蓝牙发射对WiMax接收有负面影响,但不是很严重。
解决共存挑衅
根据上文的剖析,显然无法排除或者减轻无线或物理层(PHY)的干扰,因为这种干扰是体系与生俱来的。因此,解决方案必须通过更高的层即介质拜访把持(MAC)层来实现。在MAC层,可以实现不同协议之间的同步,并保证共享频谱上的带宽能够以时分复用、非并性和公正的方法得到分配。这种解决方案可以打消任何潜在的冲突,同时仍能保持固有的链路性能属性。
有很多利用场所和使用情形须要解决,也即WiMax、蓝牙和Wi-Fi发射和吸收的各种组合,每种情形都有不同的链路扫描、树立和运动模式。为了讨论的连贯性,我们仍使用上面的例子来说明推荐的共存解决方案。后面我们还会在上述用例中增添Wi-Fi无线链路,该链路用以下要素表征:
移动电话和WiMax基站之间的有效WiMax链路。
工作在SCO/HV3模式(商用蓝牙耳机使用的尺度模式)的有效蓝牙语音链路。
{dy}步是同步协议的时间基准。首先,我们必需找到不同体系时钟之间的‘最小公因子’,并确保它们能和谐动作。蓝牙SCO/HV3模式的时基是625us,而WiMax的时基是基于5ms的帧。这意味着最小公因子时间间隔为15ms,在此期间可以处置3个WiMax帧和24个蓝牙时隙。一旦解决计划被以为能够满足15ms时间间隔,反复模式就可确保该解决计划基础上可用于这种模式。
在断定反复模式后,有必要确保两个时基是同步的,并在全部链路的并行操作进程中仍能坚持同步。由于WiMax基站决议了时基,因此移动电话不可能把持相对于蓝牙时基的相位。另一方面,移动电话中的蓝牙芯片组(假定它是蓝牙链路上的主装备)有才能节制时钟相位,并与WiMax链路上的时钟取得同步。
当蓝牙链路上的主设备是耳机而不是移动电话时,可以履行主从切换(蓝牙术语叫MSS)。一旦成为“主设备”,手机蓝牙芯片就能复位链路的时钟,并使之与WiMax时钟对齐,从而有效地实现两个时基的同步。随着时间的推移,蓝牙时钟与WiMax时钟的相对相位可能呈现偏差,因此可能请求重新同步蓝牙时钟。图2给出了两条无线链路之间的时间和相位关系。
在两条链路取得同步并断定根本的重复模式后,下一步就是树立统筹两个协议工作原理的带宽分配机制。蓝牙SCO/HV3模式定义了一个重复的六时隙周期(3.75ms),在此期间只有两个持续时隙用于发射,一个用于主设备(用M代表),一个用于从设备(用S代表)。在这个间隔时间内移动电话和耳机交流未紧缩的语音数据包。另外4个时隙尚未使用。这是一种非常基础的模式,没有定义任何调度机制、抖动把持(在时隙级)、重发、纠错技巧甚至循环冗余校验(CRC),因此任何过错都将表示为“喀喇”噪声。
WiMax帧由一个从基站向所有注册移动台广播发送的MAP消息组成。该新闻映射了同一WiMax帧中不同移动台的吸收间隔,同时在随后的WiMax帧中分配发射间隔。紧随MAP新闻的是一个下行链路间隔或“区”(WiMax术语),用于基站向注册移动台广播、组播或单播发射。在下行链路区后是上行链路区,用于移动台在前面的WiMax帧期间接受发射分配时光。每个WiMax帧依次反复这种模式。
依据蓝牙语音模式的基础特色,确保准确并行操作的根本方针是保证持续的蓝牙发射和接收时隙。因此,基站在这些间隔内(24时隙中的6个时隙,或25%的时间标注“阻塞”)必须被制止向移动电话发射或分配发送机遇。现在让我们剖析一下剩余75%的时间,以便懂得哪些时间间隔可用于WiMax链路。帧[N]实际上未被移动电话的WiMax链路使用---下行链路间隔未被使用,这是因为,鉴于蓝牙优先级(时隙B1和B2)问题,移动电话不能在帧开头接收MAP新闻。上行链路也由于蓝牙优先级(时隙B7和B8)的原因而未被使用。
在帧[N+1]期间,移动电话可以接收和解码MAP消息,并且容许它接收在B10和B12之间的间隙期(2.5ms)发送的突发信号,直到下一次蓝牙分配(时隙B13和B14)。不过,帧[N+1]中的上行链路不能被移动电话使用,因为它没有接收到帧[N]中的MAP消息,该消息用于分配帧[N+1]的上行链路间隔中用于发射的带宽。
在帧[N+2]中,由于蓝牙占用了时隙B19和B20,移动电话将不能接收来自基站的下行链路流量。帧[N+2]的上行链路间隔可能已经被赋于了帧[N+1]的MAP消息中的发射机遇,因此可用于移动电话的发射。只要两条链路保持有效,这种模式就会不断重复。
这种机制的潜在规矩是须要WiMax链路避免在某段时间内发送信号。有两种方式可以做到这一点:
1. 移动电话可以使用某种WiMax睡眠模式来避免在相应时间内与基站发生交互。这种办法的毛病是在蓝牙时隙B13和B14期间,在WiMax的发送中,可能存在误包率(PER),不过这种可能性比拟低,而且在任何情况下都可以通过WiMax中的前向纠错(FEC)和重发机制来加以战胜。
2. 依据预协商的手机功效信息,基站调度器制止在B13和B14两个时隙内进行接受和发射分配。这种方式请求对WiMax尺度作少量弥补,以便支撑手机和基站之间的共存功效协商。
把Wi-Fi增参加共存机制相对照较简略。Wi-Fi与以太网非常类似,也是一种载波侦听多址拜访/冲突检测(CSMA/CD)协议,它采取的不是时间分配机制,而是冲突检测和随机后退办法。
因此也就不可能将异步协定同步到推举的共存机制。不过这个问题可以通过应用Wi-Fi中称为非排程主动省电(U-APSD)的模式加以解决。这种模式一般用于把Wi-Fi站的功耗降至{zd1},手机在该模式下可以进入睡眠模式,让接入点缓存所有发送往手机的信息,直到预定义的缓冲器溢出。当手机退出睡眠模式时,它向接进点发送一个触发帧,接入点随后将所有缓存的数据发送给手机,从而有效地坚持了惯例CSMA/CD操作的相似性能。
这种模式在推举共存机制中的应用方式是逼迫手机Wi-Fi模式在间隔B1-B2、B7-B14、B19-B20以及B23-B24期间进入U-APSD睡眠模式,并在其它时光内(10/24或42%)坚持xx状况。这样对Wi-Fi吞吐量造成的影响是很小的,可疏忽不计。
其它时隙(标志为“OP”)代表了对某个无线链路来说可能可用也可能不可用的发射和接受机遇,这些时隙可以用任何传统的优先级算法进行分配。
前述共存方案的长处是:
1. 只有少许吞吐量的丧失就打消了共存问题。
2. 可以用于任何商用WiMax基站、支撑U-APSD的Wi-Fi接进点(大多数都支撑)和蓝牙耳机。
3. 无需对商用的蓝牙和Wi-Fi手机芯片组作任何硬件修改。
本文小结
手机和手持装备中WiMAX、蓝牙和Wi-Fi的共存带来了艰难的技巧挑战,由于它们在相邻无线频带上的发送可能会产生冲突,并严重下降性能。本文推举的共存机制可以实现WiMAX和蓝牙时钟的同步,时光上共享无线频带(以一种尽可能减小对各自无线链路性能影响的方法)以及使Wi-Fi工作于U-APSD模式,因而有效地解决了这方面的挑衅。
相关的主题文章: