1、引言
光电编码器是高精度控制系统常用的位移检测传感器。当控制对象发生位置变化时,光电编码器便会发出A、B两路相位差90度
的数字脉冲信号。正转时A超前B90度,反转时B超前A90度。脉冲的个数与位移量成比例关系,因此通过对脉冲计数就能计算出相应的位移。该方法不仅使用
方便、测量准确,而且成本较低。
使用光电编码器测量位移,准确无误的记数起着决定性作用。由于在位置控制系统中,电机既可以正转,又可以反转,所
以要求计数器既要能够实现加计数,又要能够实现减计数。相应的计数方法可以用软件来实现,也可以用硬件来实现。
使用软件方式对光电编码器的脉冲进
行方向判别和计数降低了系统控制的实时性,尤其当使用光电编码器的数量较多时,并且其可靠性也不及硬件电路。但是用软件计数外围电路比较简单,所以在计数
频率不高的情况下,使用软件计数还是有一定优势的。对编码器中输出的两路脉冲进行计数主要分两个步骤,首先要对编码器输出的两路脉冲进行鉴相,即:判别电
机是正转还是反转;其次是进行加减计数,正转时加计数,反转时减计数。
2、 鉴相原理
脉冲鉴相的方法比较多,既可以用软 件实现,也可以用一个D触发器实现。下图是编码器正反转时输出脉冲的相位关系。
由
图中编码器输出波形可以看出,编码器正转时A相超前B相90度.在A相脉冲的下降沿处,B相为高电平;而在编码器反转时,A相滞后B相90度,在A相脉冲
的下降沿处,B相输出为低电平。这样,编码器旋转时通过判断B相电平的高低就可以判断编码器的旋转方向。
3 、用软件实现脉冲的鉴相、计数
编码器输出的A向脉冲接到单片机的外部中断INT0,B向脉冲接到I/O端口P1.0。当系统工作时,首先 要把INT0设置成下降沿触发,并开相应中断。当有有效脉冲触发中断时,进行中断处理程序,判别B脉冲是高电平还是低电平,若是高电平则编码器正转,加1 计数;若是低电平则编码器反转,减1计数。
4 、用硬件实现脉冲的鉴相、计数
硬件计数在执行速度上有软件计数不可比拟的 优势,通常采用多个可预置4位双时钟加减计数器74LS193级联组成的加减计数电路。P0-P3为计数器的4位预置数据端,与数据输入锁存器相 接;Q0-Q3为计数器的4位数据输出端,与数据输出缓冲器相接;MR为清零端与上电清零脉冲相接;PL为预置允许端,由译码控制电路触发;CU为加脉冲 输入端,CD为减脉冲输入端;TCU为进位输出端,TCD 为借位输出端。当CU和CD中一个输入脉冲时,另一个必须处于高电平,才能进行计数工作。而从编码器直接输出的A、B两路脉冲不符合要求,不能直接接到计 数器的输入端。但我们可以利用这两路脉冲之间的相位关系对其进行鉴相后再计数。下图给出了光电编码器实际使用的鉴相与双向计数电路,鉴相电路用1个D触发 器和2个与非门组成,计数电路用3片74LS193组成。
当
光电编码器顺时针旋转时,A相超前B相90°,D触发器输出/Q(W1)为高电平,Q(W2)为低电平,上面与非门打开,计数脉冲通过(W3),送至双向
计数器74LS193的加脉冲输入端CU,进行加法计数;此时,下面与非门关闭,其输出为高电平(W4)。当光电编码器逆时针旋转时,A相比B相延迟
90°,D触发器输出/Q(W1)为低电平,Q(W2)为高电平,上面与非门关闭,其输出为高电平(W3);此时,下面与非门打开,计数脉冲通过(波
W4),送至双向计数器74LS193的减脉冲输入端CD,进行减法计数。
5、利用单片机内部计数器实现可逆计数
对以上 两种计数方法进行分析可知,用纯软件计数虽然电路简单,但是计数速度慢,难以满足实时性要求,而且容易出错,用外接加减计数芯片的方法,虽然速度快,但硬 件电路复杂,由上图可以看出要做一个12位计数器需要5个外围芯片,成本也较高。那么我们能否用单片机内部的计数器来实现加减计数呢。我们知道,8051 片内有两个16位的定时器:定时器0和定时器1,8052还有一个定时器2,这三个定时器都可以作为计数器来用。但8051内部的计数器是加1计数器,所 以不能直接应用,必须经过适当的软件编程,来实现其“减”计数功能。我们可以把经过D触发器之后的脉冲,即方向控制脉冲(DIR)接到单片机的外部中断 INT0端,同时经过反向器后再接到另一个外部中断INT1,并且把计数脉冲A接到单片机的片内计数器T0端即可,相对外部计数芯片来说,使用这种方法电 路相对要简单的多。系统工作时,先要把两个中断设置成下降沿触发,并打开相应的中断。当方向判别脉冲(DIR)由低—高跳变时,INT1中断,执行相应的 中断程序,进行加计数;而当方向判别脉冲由高—低跳变时,INT0中断,执行相应的中断程序,进行“减”计数(实际是重新复值,进行加计数)。下面是软件 编程思路:
我们在C语言环境下来实现计数功能: