LB8652T资料明细大全 中文与英文的电路应用程序 如下:
Features
•在一块芯片埋置的数字照相机的作动器司机。 (没支持的同步驾驶。)
(1)饱和为AF -步进电动机输出了(两阶段, 1-2可能阶段的励磁)
(2)为嘘输出的恒定的当前控制
•快的充电和快的放电电路允许反应速度的安定。
•输入端1提供快门严密控制。
•,当快门开头控制,开放环路的恒定的当前控制是可能的。
(3) AE的饱和产品-可以使用VCM或步进电动机。 (两阶段, 1-2可能阶段的励磁)
(4)徒升(透镜镜筒) -恒定的电压DC马达司机(正常演变或反向演变或者闸)
Or饱和输出的步进电动机(两阶段, 1-2可能阶段的励磁)
Monolithic数字式集成电路数字式照相机的Driver
Features
•在一块芯片埋置的数字照相机的作动器司机。 (没支持的同步驾驶。)
(1)饱和为AF -步进电动机输出了(两阶段, 1-2可能阶段的励磁)
(2)为嘘输出的恒定的当前控制
•快的充电和快的放电电路允许反应速度的安定。
•输入端1提供快门严密控制。
•,当快门开头控制,开放环路的恒定的当前控制是可能的。
(3) AE的饱和产品-可以使用VCM或步进电动机。 (两阶段, 1-2可能阶段的励磁)
(4)徒升(透镜镜筒) -恒定的电压DC马达司机(正常演变或反向演变或者闸)
Or饱和输出的步进电动机(两阶段, 1-2可能阶段的励磁)
Monolithic数字式集成电路数字式照相机的Driver
LB8652T
Features
• Actuator driver for digital cameras embedded in one chip. (Not supported synchronous driving.)
(1) Saturation output for AF - Stepping motor (2 phase, 1-2 phase excitation possible)
(2) Constant current control output for SH
• Quick charge and quick discharge circuitry allow the stabilization of response speeds.
• Input port 1 allows shutter close control.
• When shutter opening control, open-loop constant current control is possible.
(3) Saturation output for AE - VCM or stepping motor can be used. (2 phase, 1-2 phase excitation possible)
(4) ZOOM (lens barrel) - Constant voltage DC motor driver (Normal evolution/Reverse evolution/Brake)
Or saturation output stepping motor (2 phase, 1-2 phase excitation possible)
Monolithic Digital IC
Driver for Digital Still Cameras
Features
• Actuator driver for digital cameras embedded in one chip. (Not supported synchronous driving.)
(1) Saturation output for AF - Stepping motor (2 phase, 1-2 phase excitation possible)
(2) Constant current control output for SH
• Quick charge and quick discharge circuitry allow the stabilization of response speeds.
• Input port 1 allows shutter close control.
• When shutter opening control, open-loop constant current control is possible.
(3) Saturation output for AE - VCM or stepping motor can be used. (2 phase, 1-2 phase excitation possible)
(4) ZOOM (lens barrel) - Constant voltage DC motor driver (Normal evolution/Reverse evolution/Brake)
Or saturation output stepping motor (2 phase, 1-2 phase excitation possible)
Monolithic Digital IC
Driver for Digital Still Cameras
可能各种各样的作动器的•应用。
SH AE AF徒升
Application例子1 VCM VCM STM DCM
Application例子2 VCM VCM STM STM
Application例子3 VCM STM STM DCM
•没有备用当前消耗(或零)。
• 2系统电源(VB : 为DC马达, VCC : 其他)
•低饱和产品
•固定热养护电路小的•,稀薄的包裹
Specifications
Absolute{zd0}规定值在Ta = 25°C
Parameter标志适应规定值单位
Maximum电源电压VB{zd0}VB 10.5
VCC{zd0}VCC 10.5
V
Maximum应用的输入电压VIN{zd0}MD1到3,对4 10.5 V的IN1
Maximum申请了产品电压VOUT{zd0}OUT1于8 10.5 V
Continued下一页。
Ordering数字: EN7896C
Monolithic数字式集成电路数字式照相机的Driver
此中被描述或从容的任意SANYO半导体产品没有规格
that可能处理极端要求可靠性高水平,生活支持系统, 的应用aircraft控制系统,或者失败可以合理地期望导致的其他应用serious物理并且/或者物资损失。 与您的SANYO半导体代表咨询nearest您在使用在这样此中描述或包含的任何SANYO半导体产品之前applications.
SANYO半导体不承担责任对起因于使用产品的设备故障甚而一瞬间,超出额定的价值的at价值(例如{zd0}规定值,操作条件
ranges,或者在任意SANYO半导体的制品技术规范)列出的其他参量此中被描述或从容的products。
SH AE AF徒升
Application例子1 VCM VCM STM DCM
Application例子2 VCM VCM STM STM
Application例子3 VCM STM STM DCM
•没有备用当前消耗(或零)。
• 2系统电源(VB : 为DC马达, VCC : 其他)
•低饱和产品
•固定热养护电路小的•,稀薄的包裹
Specifications
Absolute{zd0}规定值在Ta = 25°C
Parameter标志适应规定值单位
Maximum电源电压VB{zd0}VB 10.5
VCC{zd0}VCC 10.5
V
Maximum应用的输入电压VIN{zd0}MD1到3,对4 10.5 V的IN1
Maximum申请了产品电压VOUT{zd0}OUT1于8 10.5 V
Continued下一页。
Ordering数字: EN7896C
Monolithic数字式集成电路数字式照相机的Driver
此中被描述或从容的任意SANYO半导体产品没有规格
that可能处理极端要求可靠性高水平,生活支持系统, 的应用aircraft控制系统,或者失败可以合理地期望导致的其他应用serious物理并且/或者物资损失。 与您的SANYO半导体代表咨询nearest您在使用在这样此中描述或包含的任何SANYO半导体产品之前applications.
SANYO半导体不承担责任对起因于使用产品的设备故障甚而一瞬间,超出额定的价值的at价值(例如{zd0}规定值,操作条件
ranges,或者在任意SANYO半导体的制品技术规范)列出的其他参量此中被描述或从容的products。
• Applications of various actuators possible.
SH AE AF ZOOM
Application Example 1 VCM VCM STM DCM
Application Example 2 VCM VCM STM STM
Application Example 3 VCM STM STM DCM
• No standby current consumption (or zero).
• 2 system power source (VB : for DC motor, VCC : others)
• Low saturation output
• Built-in thermal protection circuitry
• Small, thin package
Specifications
Absolute Maximum Ratings at Ta = 25°C
Parameter Symbol Conditions Ratings Unit
Maximum Power Source Voltage VB max VB 10.5
VCC max VCC 10.5
V
Maximum Applied Input Voltage VIN max MD1 to 3, IN1 to 4 10.5 V
Maximum Applied Output Voltage VOUT max OUT1 to 8 10.5 V
Continued on next page.
Ordering number : EN7896C
Monolithic Digital IC
Driver for Digital Still Cameras
Any and all SANYO Semiconductor products described or contained herein do not have specifications
that can handle applications that require extremely high levels of reliability, such as life-support systems,
aircraft's control systems, or other applications whose failure can be reasonably expected to result in
serious physical and/or material damage. Consult with your SANYO Semiconductor representative
nearest you before using any SANYO Semiconductor products described or contained herein in such
applications.
SANYO Semiconductor assumes no responsibility for equipment failures that result from using products
at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor
products described or contained herein.
SH AE AF ZOOM
Application Example 1 VCM VCM STM DCM
Application Example 2 VCM VCM STM STM
Application Example 3 VCM STM STM DCM
• No standby current consumption (or zero).
• 2 system power source (VB : for DC motor, VCC : others)
• Low saturation output
• Built-in thermal protection circuitry
• Small, thin package
Specifications
Absolute Maximum Ratings at Ta = 25°C
Parameter Symbol Conditions Ratings Unit
Maximum Power Source Voltage VB max VB 10.5
VCC max VCC 10.5
V
Maximum Applied Input Voltage VIN max MD1 to 3, IN1 to 4 10.5 V
Maximum Applied Output Voltage VOUT max OUT1 to 8 10.5 V
Continued on next page.
Ordering number : EN7896C
Monolithic Digital IC
Driver for Digital Still Cameras
Any and all SANYO Semiconductor products described or contained herein do not have specifications
that can handle applications that require extremely high levels of reliability, such as life-support systems,
aircraft's control systems, or other applications whose failure can be reasonably expected to result in
serious physical and/or material damage. Consult with your SANYO Semiconductor representative
nearest you before using any SANYO Semiconductor products described or contained herein in such
applications.
SANYO Semiconductor assumes no responsibility for equipment failures that result from using products
at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor
products described or contained herein.
LB8652T
No.7896-2/8
Continued from preceding page.
Parameter Symbol Conditions Ratings Unit
Maximum Output Current 1 IO max1 OUT1 400 mA
Maximum Output Current 2 IO max2 OUT2, 3, OUT5 to 7 600 mA
Maximum Output Current 3 IO max3 OUT4, OUT8 800 mA
Allowable Power Dissipation Pd max1 Substrate mounting (*1) 800 mW
Operating Temperature Topr1 -20 to +80 °C
Storage Temperature Tstg -55 to +150 °C
(*1) Standard mounting substrate : 76.1mm×114.3mm×1.6mm glass epoxy resin
Allowable Operating Range at Ta = 25°C
Parameter Symbol Conditions Ratings Unit
Source Voltage Range VB (*2) 2.0 to 10
VCC 2.0 to 10
V
LB8652T
No.7896-2/8从在先的页的Continued。
Parameter标志适应规定值单位
Maximum输出电流1 IO max1 OUT1 400 mA
Maximum输出电流2 IO max2 OUT2, 3,对7 600 mA的OUT5
Maximum输出电流3 IO max3 OUT4, OUT8 800 mA
Allowable功率耗散Pd max1基体架置(*1) 800兆瓦
Operating温度Topr1 -20到+80 °C
Storage温度Tstg -55到+150 °C
(*1)标准架置基体: 76.1mm×114.3mm×1.6mm玻璃纤维环氧树脂的树脂
Allowable操作范围在Ta = 25°C
Parameter标志适应规定值单位
Source电压范围VB (*2) 2.0到10
VCC 2.0到10
V
Input Pin高级电压VINH MD1到3,对4 1.8到10 V 的IN1Input Pin低级电压VINL MD1到3,对4 -0.3到0.4 V 的IN1Constant电压设置输入范围VOC VC 0.8到2.0 V
No.7896-2/8
Continued from preceding page.
Parameter Symbol Conditions Ratings Unit
Maximum Output Current 1 IO max1 OUT1 400 mA
Maximum Output Current 2 IO max2 OUT2, 3, OUT5 to 7 600 mA
Maximum Output Current 3 IO max3 OUT4, OUT8 800 mA
Allowable Power Dissipation Pd max1 Substrate mounting (*1) 800 mW
Operating Temperature Topr1 -20 to +80 °C
Storage Temperature Tstg -55 to +150 °C
(*1) Standard mounting substrate : 76.1mm×114.3mm×1.6mm glass epoxy resin
Allowable Operating Range at Ta = 25°C
Parameter Symbol Conditions Ratings Unit
Source Voltage Range VB (*2) 2.0 to 10
VCC 2.0 to 10
V
LB8652T
No.7896-2/8从在先的页的Continued。
Parameter标志适应规定值单位
Maximum输出电流1 IO max1 OUT1 400 mA
Maximum输出电流2 IO max2 OUT2, 3,对7 600 mA的OUT5
Maximum输出电流3 IO max3 OUT4, OUT8 800 mA
Allowable功率耗散Pd max1基体架置(*1) 800兆瓦
Operating温度Topr1 -20到+80 °C
Storage温度Tstg -55到+150 °C
(*1)标准架置基体: 76.1mm×114.3mm×1.6mm玻璃纤维环氧树脂的树脂
Allowable操作范围在Ta = 25°C
Parameter标志适应规定值单位
Source电压范围VB (*2) 2.0到10
VCC 2.0到10
V
Input Pin高级电压VINH MD1到3,对4 1.8到10 V 的IN1Input Pin低级电压VINL MD1到3,对4 -0.3到0.4 V 的IN1Constant电压设置输入范围VOC VC 0.8到2.0 V
(*2)对优先权的没有制约在应用的电压VB之中(电池功率来源),
VCC (加强电源)和VIN (CPU电源)。
Example1 : VB = 3.3V, VCC = 4.0V, VIN = 5.0V
Example2 : VB = 3.3V, VIN = 5.0V
Electrical特征在Ta = 25°C, VB = VCC = 3V, Rf = 1Ω
Ratings
Parameter标志情况{zd0}min typ
Unit
Standby当前消耗ICC0 VB = VCC = 8.0V MD1到3, IN1到4 = L 0.1 5.0 μA
ICC1 AF方式IN1, 3 = H (两阶段励磁) 24 32
ICC2 AF方式IN3 = H (1阶段励磁) 14 21
ICC3嘘方式IN1 = L 42 54
VCC工作电流消耗量
ICC4嘘方式IN1 = H RILM = 2kΩ 18 24
mA
VB工作电流消耗量IB DC-ZOOM方式IN3 = H 7 15 mA
Reference电压Vref Iref = -1mA 1.74 1.8 1.86 V
Reference电压启动时间Tr设计保证了0.5 2.0 μs
Input Pin当前IIN VIN = 5.0V 70 90 μA
Overheat保护操作
Temperature
THD设计保证了(*3)
160 180 200 °C
[AF的] (OUT2步进电动机司机到3, OUT6到7)
Output饱和电压1 VSAT1 VCC = 3.3V, IO = 0.2A (上部和降下) 0.15 0.25 0.40 V
[AE司机] (OUT5到6)
Output饱和电压2 VSAT2 VCC = 3.3V, IO = 0.2A (上部和降下) 0.15 0.25 0.40 V
[嘘司机] (OUT1到2)
Output恒定的潮流1 IO1对3.7V, Rf = 1Ω 194的OUT2→OUT1 VCC = 3.0 206 218
Output恒定的潮流2 IO2 OUT1→OUT2 VCC = 3.3V RILM = 1.6kΩ 130 160 190
mA
Output饱和电压3 VSAT3 OUT2→OUT1 VCC = 3.3V,
IO = 0.2A (上部和降下) 0.15 0.25 0.40 V
[DC徒升的] (OUT4马达司机到8)
Output恒定的电压VO VB = 3.0对3.7V, VC = 1V 2.38 2.5 2.62 V
Output饱和电压4 VSAT4 VB = 3.3V, IO = 0.3A (上部和降下) 0.2 0.3 0.45 V
Output饱和电压5 VSAT5 VB = 3.3V, IO = 0.3A (上部) 0.1 0.18 0.25 V
(*3)为在保证的温度范围之内的特征,运输的检查执行在Ta = 25°C.
For所有温度范围,它是保证的设计。
VCC (加强电源)和VIN (CPU电源)。
Example1 : VB = 3.3V, VCC = 4.0V, VIN = 5.0V
Example2 : VB = 3.3V, VIN = 5.0V
Electrical特征在Ta = 25°C, VB = VCC = 3V, Rf = 1Ω
Ratings
Parameter标志情况{zd0}min typ
Unit
Standby当前消耗ICC0 VB = VCC = 8.0V MD1到3, IN1到4 = L 0.1 5.0 μA
ICC1 AF方式IN1, 3 = H (两阶段励磁) 24 32
ICC2 AF方式IN3 = H (1阶段励磁) 14 21
ICC3嘘方式IN1 = L 42 54
VCC工作电流消耗量
ICC4嘘方式IN1 = H RILM = 2kΩ 18 24
mA
VB工作电流消耗量IB DC-ZOOM方式IN3 = H 7 15 mA
Reference电压Vref Iref = -1mA 1.74 1.8 1.86 V
Reference电压启动时间Tr设计保证了0.5 2.0 μs
Input Pin当前IIN VIN = 5.0V 70 90 μA
Overheat保护操作
Temperature
THD设计保证了(*3)
160 180 200 °C
[AF的] (OUT2步进电动机司机到3, OUT6到7)
Output饱和电压1 VSAT1 VCC = 3.3V, IO = 0.2A (上部和降下) 0.15 0.25 0.40 V
[AE司机] (OUT5到6)
Output饱和电压2 VSAT2 VCC = 3.3V, IO = 0.2A (上部和降下) 0.15 0.25 0.40 V
[嘘司机] (OUT1到2)
Output恒定的潮流1 IO1对3.7V, Rf = 1Ω 194的OUT2→OUT1 VCC = 3.0 206 218
Output恒定的潮流2 IO2 OUT1→OUT2 VCC = 3.3V RILM = 1.6kΩ 130 160 190
mA
Output饱和电压3 VSAT3 OUT2→OUT1 VCC = 3.3V,
IO = 0.2A (上部和降下) 0.15 0.25 0.40 V
[DC徒升的] (OUT4马达司机到8)
Output恒定的电压VO VB = 3.0对3.7V, VC = 1V 2.38 2.5 2.62 V
Output饱和电压4 VSAT4 VB = 3.3V, IO = 0.3A (上部和降下) 0.2 0.3 0.45 V
Output饱和电压5 VSAT5 VB = 3.3V, IO = 0.3A (上部) 0.1 0.18 0.25 V
(*3)为在保证的温度范围之内的特征,运输的检查执行在Ta = 25°C.
For所有温度范围,它是保证的设计。
(*2) No restriction on priority among applied voltages of VB (Battery power source),
VCC (step-up power source) and VIN (CPU power source).
Example1 : VB = 3.3V, VCC = 4.0V, VIN = 5.0V
Example2 : VB = 3.3V, VIN = 5.0V
Electrical Characteristics at Ta = 25°C, VB = VCC = 3V, Rf = 1Ω
Ratings
Parameter Symbol Conditions
min typ max
Unit
Standby Current Consumption ICC0 VB = VCC = 8.0V MD1 to 3, IN1 to 4 = L 0.1 5.0 μA
ICC1 AF mode IN1, 3 = H (2 phase excitation) 24 32
ICC2 AF mode IN3 = H (1 phase excitation) 14 21
ICC3 SH mode IN1 = L 42 54
VCC Operating Current Consumption
ICC4 SH mode IN1 = H RILM = 2kΩ 18 24
mA
VB Operating Current Consumption IB DC-ZOOM mode IN3 = H 7 15 mA
Reference Voltage Vref Iref = -1mA 1.74 1.8 1.86 V
Reference Voltage start-up time Tr Design guaranteed 0.5 2.0 μs
Input Pin Current IIN VIN = 5.0V 70 90 μA
Overheat Protection Operation
Temperature
THD Design guaranteed (*3)
160 180 200 °C
[Stepping motor driver for AF] (OUT2 to 3, OUT6 to 7)
Output Saturation Voltage 1 VSAT1 VCC = 3.3V, IO = 0.2A (upper and lower) 0.15 0.25 0.40 V
[AE driver] (OUT5 to 6)
Output Saturation Voltage 2 VSAT2 VCC = 3.3V, IO = 0.2A (upper and lower) 0.15 0.25 0.40 V
[SH driver] (OUT1 to 2)
Output Constant Current 1 IO1 OUT2→OUT1 VCC = 3.0 to 3.7V, Rf = 1Ω 194 206 218
Output Constant Current 2 IO2 OUT1→OUT2 VCC = 3.3V RILM = 1.6kΩ 130 160 190
mA
Output Saturation Voltage 3 VSAT3 OUT2→OUT1 VCC = 3.3V,
IO = 0.2A (upper and lower) 0.15 0.25 0.40 V
[DC motor driver for ZOOM] (OUT4 to 8)
Output Constant Voltage VO VB = 3.0 to 3.7V, VC = 1V 2.38 2.5 2.62 V
Output Saturation Voltage 4 VSAT4 VB = 3.3V, IO = 0.3A (upper and lower) 0.2 0.3 0.45 V
Output Saturation Voltage 5 VSAT5 VB = 3.3V, IO = 0.3A (upper) 0.1 0.18 0.25 V
(*3) For the characteristic within the guaranteed temperature range, shipping check is performed at Ta = 25°C.
For all temperature range, it is design guaranteed.
VCC (step-up power source) and VIN (CPU power source).
Example1 : VB = 3.3V, VCC = 4.0V, VIN = 5.0V
Example2 : VB = 3.3V, VIN = 5.0V
Electrical Characteristics at Ta = 25°C, VB = VCC = 3V, Rf = 1Ω
Ratings
Parameter Symbol Conditions
min typ max
Unit
Standby Current Consumption ICC0 VB = VCC = 8.0V MD1 to 3, IN1 to 4 = L 0.1 5.0 μA
ICC1 AF mode IN1, 3 = H (2 phase excitation) 24 32
ICC2 AF mode IN3 = H (1 phase excitation) 14 21
ICC3 SH mode IN1 = L 42 54
VCC Operating Current Consumption
ICC4 SH mode IN1 = H RILM = 2kΩ 18 24
mA
VB Operating Current Consumption IB DC-ZOOM mode IN3 = H 7 15 mA
Reference Voltage Vref Iref = -1mA 1.74 1.8 1.86 V
Reference Voltage start-up time Tr Design guaranteed 0.5 2.0 μs
Input Pin Current IIN VIN = 5.0V 70 90 μA
Overheat Protection Operation
Temperature
THD Design guaranteed (*3)
160 180 200 °C
[Stepping motor driver for AF] (OUT2 to 3, OUT6 to 7)
Output Saturation Voltage 1 VSAT1 VCC = 3.3V, IO = 0.2A (upper and lower) 0.15 0.25 0.40 V
[AE driver] (OUT5 to 6)
Output Saturation Voltage 2 VSAT2 VCC = 3.3V, IO = 0.2A (upper and lower) 0.15 0.25 0.40 V
[SH driver] (OUT1 to 2)
Output Constant Current 1 IO1 OUT2→OUT1 VCC = 3.0 to 3.7V, Rf = 1Ω 194 206 218
Output Constant Current 2 IO2 OUT1→OUT2 VCC = 3.3V RILM = 1.6kΩ 130 160 190
mA
Output Saturation Voltage 3 VSAT3 OUT2→OUT1 VCC = 3.3V,
IO = 0.2A (upper and lower) 0.15 0.25 0.40 V
[DC motor driver for ZOOM] (OUT4 to 8)
Output Constant Voltage VO VB = 3.0 to 3.7V, VC = 1V 2.38 2.5 2.62 V
Output Saturation Voltage 4 VSAT4 VB = 3.3V, IO = 0.3A (upper and lower) 0.2 0.3 0.45 V
Output Saturation Voltage 5 VSAT5 VB = 3.3V, IO = 0.3A (upper) 0.1 0.18 0.25 V
(*3) For the characteristic within the guaranteed temperature range, shipping check is performed at Ta = 25°C.
For all temperature range, it is design guaranteed.
考虑到的点,当设计时
(1)为快门控制恒定的当前设置(RFG、OUT1, OUT2)
The恒定的潮流,当流动潮流从OUT2到OUT1可以由被连接的电阻器指定
between RFG和GND。 参考电压在集成电路引起,并且它是大约0.21V。 电压用这样方式控制的is,以便电压引起在用于当前侦查的电阻器连接了
between RFG和GND与这电压是相等的。计算的输出电流The惯例是如下所示。 另外,作为一个根本设置,它是
designed,以便200mA大约将流经卷,当RFG电阻器用1Ω连接。
(潮流从OUT2流动到OUT1)
= 0.21V÷ (在RFG和GND+0.05Ω之间的抵抗) - (激励电流产品Tr)
This 0.05Ω是为驱使在RFG别针和的恒定的潮流产品Tr放射器的共同的阻抗感觉恒定的当前控制放大器的the接线。
Also,产品Tr激励电流与大约1/hfe (第80到200th零件是相等的)卷潮流。
The恒定的潮流从OUT2比那从OUT1流动了到OUT2流动了到OUT1准确。
Therefore保证为快门结束驱动使用这个方法。
(2)为快门控制开放环路的恒定的当前控制设置(ILM、OUT1, OUT2)
为了防止高电流流动,当快门开头,输出电流控制电路是当前流动的implemented从OUT1到OUT2。 恒定的潮流,当流动潮流从时对OUT2的OUT1可以由电阻器指定被连接在ILM和GND之间。计算的输出电流The惯例是如下所示。
(潮流从OUT1流动到OUT2) = 1.36V÷ (在ILM和GND之间的抵抗)大约×200。由于反馈信号没有发出的开环控制,恒定的潮流的准确性相对地是
inferior. 它为快门开头驱动使用。
(3)阶段报偿电容器(FC)
See和检查电容器价值在0.0015之间的FC别针对0.033μF.选择做的电容价值not起因产品的动摆问题。 特别是,当使用时与大感应性的卷,它是必要的
to选择充分大的电容。
(4)恒定的电压控制动摆停着的电容器(OUT4, OUT8)控制恒定的电压,安置电容器在出口别针之间停止的When是必要的
oscillation. 看见并且检查在0.01μF范围的电容价值对0.1μF.选择的电容价值does起因产品的不是动摆问题。驾驶在饱和的When,那里是对这样动摆停着的电容器的没有需要。
(5) GND接线和输电线电容器: (GND×2, VCC, VB)
Connect GND (2个地方)在集成电路附近,和安置电容器一样紧密尽可能对其中每一个力量别针。
(1)为快门控制恒定的当前设置(RFG、OUT1, OUT2)
The恒定的潮流,当流动潮流从OUT2到OUT1可以由被连接的电阻器指定
between RFG和GND。 参考电压在集成电路引起,并且它是大约0.21V。 电压用这样方式控制的is,以便电压引起在用于当前侦查的电阻器连接了
between RFG和GND与这电压是相等的。计算的输出电流The惯例是如下所示。 另外,作为一个根本设置,它是
designed,以便200mA大约将流经卷,当RFG电阻器用1Ω连接。
(潮流从OUT2流动到OUT1)
= 0.21V÷ (在RFG和GND+0.05Ω之间的抵抗) - (激励电流产品Tr)
This 0.05Ω是为驱使在RFG别针和的恒定的潮流产品Tr放射器的共同的阻抗感觉恒定的当前控制放大器的the接线。
Also,产品Tr激励电流与大约1/hfe (第80到200th零件是相等的)卷潮流。
The恒定的潮流从OUT2比那从OUT1流动了到OUT2流动了到OUT1准确。
Therefore保证为快门结束驱动使用这个方法。
(2)为快门控制开放环路的恒定的当前控制设置(ILM、OUT1, OUT2)
为了防止高电流流动,当快门开头,输出电流控制电路是当前流动的implemented从OUT1到OUT2。 恒定的潮流,当流动潮流从时对OUT2的OUT1可以由电阻器指定被连接在ILM和GND之间。计算的输出电流The惯例是如下所示。
(潮流从OUT1流动到OUT2) = 1.36V÷ (在ILM和GND之间的抵抗)大约×200。由于反馈信号没有发出的开环控制,恒定的潮流的准确性相对地是
inferior. 它为快门开头驱动使用。
(3)阶段报偿电容器(FC)
See和检查电容器价值在0.0015之间的FC别针对0.033μF.选择做的电容价值not起因产品的动摆问题。 特别是,当使用时与大感应性的卷,它是必要的
to选择充分大的电容。
(4)恒定的电压控制动摆停着的电容器(OUT4, OUT8)控制恒定的电压,安置电容器在出口别针之间停止的When是必要的
oscillation. 看见并且检查在0.01μF范围的电容价值对0.1μF.选择的电容价值does起因产品的不是动摆问题。驾驶在饱和的When,那里是对这样动摆停着的电容器的没有需要。
(5) GND接线和输电线电容器: (GND×2, VCC, VB)
Connect GND (2个地方)在集成电路附近,和安置电容器一样紧密尽可能对其中每一个力量别针。
此中被描述或从容的任意SANYO半导体产品的规格规定
performance、被描述的产品的特征和作用在独立国家的,和是被描述的产品的表现、特征和作用的not保证作为登上的的in顾客的产品或设备。 核实在不可能被评估的症状和状态independent设备,顾客应该总是评估和测试在顾客的登上的设备products或设备。
SANYO半导体Co.,有限公司努力供应优质高可靠性产品。 然而,任何
and所有半导体产品无法与某一可能性。 是可能的这些机率失败
could提升事故或可能危及人生的事件,那可能提升烟或
fire或者那能造成对其他物产的损伤。 当设计设备时,采取安全措施
,以便这些事故或事件不可能发生。 这样措施包括,但是没有被限制到
protective电路和错误预防为安全设计、冗余设计和结构设计巡回。
,在任一或所有的SANYO半导体产品(包括技术数据,服务)情况下描述了此中从容的or是受控的根据任何可适用的地方出口管制法律和章程,这样不能出口products不获得出口许可证从在有关的当局与上述法律的accordance。这出版物的No零件在所有形式或无论如何,电子或也许被再生产或被传送mechanical,包括影印和记录,或者任何信息存储或检索系统或者
otherwise,没有SANYO半导体Co.预先的写作许可,有限公司。
此中被描述或从容的任意信息不预先通知是随时变化由于
product/technology改善等等。 当设计设备时,参见“交付规格”
for您打算使用的SANYO半导体产品。
Information (包括电路图和电路参量)此中只例如是; 它不是批量生产的guaranteed。 SANYO半导体相信此中信息是准确和
reliable,但是保证没有关于它的用途或智力的任何违反被做也没有被暗示property权利或第三方其他权利。 这编目在2006年12月提供信息。 此中规格和信息是主题
performance、被描述的产品的特征和作用在独立国家的,和是被描述的产品的表现、特征和作用的not保证作为登上的的in顾客的产品或设备。 核实在不可能被评估的症状和状态independent设备,顾客应该总是评估和测试在顾客的登上的设备products或设备。
SANYO半导体Co.,有限公司努力供应优质高可靠性产品。 然而,任何
and所有半导体产品无法与某一可能性。 是可能的这些机率失败
could提升事故或可能危及人生的事件,那可能提升烟或
fire或者那能造成对其他物产的损伤。 当设计设备时,采取安全措施
,以便这些事故或事件不可能发生。 这样措施包括,但是没有被限制到
protective电路和错误预防为安全设计、冗余设计和结构设计巡回。
,在任一或所有的SANYO半导体产品(包括技术数据,服务)情况下描述了此中从容的or是受控的根据任何可适用的地方出口管制法律和章程,这样不能出口products不获得出口许可证从在有关的当局与上述法律的accordance。这出版物的No零件在所有形式或无论如何,电子或也许被再生产或被传送mechanical,包括影印和记录,或者任何信息存储或检索系统或者
otherwise,没有SANYO半导体Co.预先的写作许可,有限公司。
此中被描述或从容的任意信息不预先通知是随时变化由于
product/technology改善等等。 当设计设备时,参见“交付规格”
for您打算使用的SANYO半导体产品。
Information (包括电路图和电路参量)此中只例如是; 它不是批量生产的guaranteed。 SANYO半导体相信此中信息是准确和
reliable,但是保证没有关于它的用途或智力的任何违反被做也没有被暗示property权利或第三方其他权利。 这编目在2006年12月提供信息。 此中规格和信息是主题
Points to Take into Consideration When Designing
(1) For shutter control Constant current setting (RFG, OUT1, OUT2)
The constant current when flowing the current from OUT2 to OUT1 can be specified by a resistor connected
between RFG and GND. The reference voltage is generated in the IC and it is approximately 0.21V. The voltage
is controlled in such a way so that the voltage generated at the resistor used for current detection connected
between RFG and GND would be equal to this voltage.
The formula for calculating the output current is as given below. In addition, as a fundamental setting, it is
designed so that the approx. 200mA would flow through the coil when RFG resistor is connected with 1Ω.
(Current flows from OUT2 to OUT1)
= 0.21V÷(Resistance between RFG and GND+0.05Ω) - (Drive current of output Tr)
This 0.05Ω is for a common impedance of the output Tr emitter which drives constant current in the RFG pin and
the sensing wiring for the constant current control amplifier.
Also, the drive current of output Tr is equal to 1/hfe (a 80th to 200th part approx.) of the coil current.
The constant current flowed from OUT2 to OUT1 is more accurate than that flowed from OUT1 to OUT2.
Therefore make sure to use this method for shutter closing drive.
(2) For shutter control Open-loop constant current control setting (ILM, OUT1, OUT2)
In order to prevent the high-current flowing when shutter opening, the output current control circuit is
implemented for current flowing from OUT1 to OUT2. The constant current when flowing the current from
OUT1 to OUT2 can be specified by a resistor connected between ILM and GND.
The formula for calculating the output current is as given below.
(Current flows from OUT1 to OUT2) = 1.36V÷(Resistance between ILM and GND) ×200 approx.
Due to open-loop control by which feedback signals are not sent, the accuracy of constant current is relatively
inferior. It is used for shutter opening drive.
(3) Phase compensation capacitor (FC)
See and check the capacitor value for FC pin between 0.0015 to 0.033μF. Choose a capacitance value which does
not cause oscillation problems for output. In particular, when a coil with large inductance is used, it is necessary
to choose a sufficiently large capacitance.
(4) Constant voltage control Oscillation-stopping capacitor (OUT4, OUT8)
When controlling the constant voltages, it is necessary to place capacitors between the OUT pins to stop
oscillation. See and check the capacitance value between 0.01μF to 0.1μF. Choose a capacitance value which
does not cause oscillation problems for output.
When driving at saturation, there is no need for such oscillation-stopping capacitors.
(5) GND wiring and power line capacitors : (GND×2, VCC, VB)
Connect GND (2 places) near the IC, and place the capacitors as close as possible to each of the power pins.
LB8652T
No.7896-8/8
PS
This catalog provides information as of December, 2006. Specifications and information herein are subject
to change without notice.
Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the
performance, characteristics, and functions of the described products in the independent state, and are
not guarantees of the performance, characteristics, and functions of the described products as mounted
in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an
independent device, the customer should always evaluate and test devices mounted in the customer's
products or equipment.
SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any
and all semiconductor products fail with some probability. It is possible that these probabilistic failures
could give rise to accidents or events that could endanger human lives, that could give rise to smoke or
fire, or that could cause damage to other property. When designing equipment, adopt safety measures
so that these kinds of accidents or events cannot occur. Such measures include but are not limited to
protective circuits and error prevention circuits for safe design, redundant design, and structural design.
In the event that any or all SANYO Semiconductor products (including technical data,services) described
or contained herein are controlled under any of applicable local export control laws and regulations, such
products must not be exported without obtaining the export license from the authorities concerned in
accordance with the above law.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, or any information storage or retrieval system, or
otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
Any and all information described or contained herein are subject to change without notice due to
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification"
for the SANYO Semiconductor product that you intend to use.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not
guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and
reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual
property rights or other rights of third parties.
(1) For shutter control Constant current setting (RFG, OUT1, OUT2)
The constant current when flowing the current from OUT2 to OUT1 can be specified by a resistor connected
between RFG and GND. The reference voltage is generated in the IC and it is approximately 0.21V. The voltage
is controlled in such a way so that the voltage generated at the resistor used for current detection connected
between RFG and GND would be equal to this voltage.
The formula for calculating the output current is as given below. In addition, as a fundamental setting, it is
designed so that the approx. 200mA would flow through the coil when RFG resistor is connected with 1Ω.
(Current flows from OUT2 to OUT1)
= 0.21V÷(Resistance between RFG and GND+0.05Ω) - (Drive current of output Tr)
This 0.05Ω is for a common impedance of the output Tr emitter which drives constant current in the RFG pin and
the sensing wiring for the constant current control amplifier.
Also, the drive current of output Tr is equal to 1/hfe (a 80th to 200th part approx.) of the coil current.
The constant current flowed from OUT2 to OUT1 is more accurate than that flowed from OUT1 to OUT2.
Therefore make sure to use this method for shutter closing drive.
(2) For shutter control Open-loop constant current control setting (ILM, OUT1, OUT2)
In order to prevent the high-current flowing when shutter opening, the output current control circuit is
implemented for current flowing from OUT1 to OUT2. The constant current when flowing the current from
OUT1 to OUT2 can be specified by a resistor connected between ILM and GND.
The formula for calculating the output current is as given below.
(Current flows from OUT1 to OUT2) = 1.36V÷(Resistance between ILM and GND) ×200 approx.
Due to open-loop control by which feedback signals are not sent, the accuracy of constant current is relatively
inferior. It is used for shutter opening drive.
(3) Phase compensation capacitor (FC)
See and check the capacitor value for FC pin between 0.0015 to 0.033μF. Choose a capacitance value which does
not cause oscillation problems for output. In particular, when a coil with large inductance is used, it is necessary
to choose a sufficiently large capacitance.
(4) Constant voltage control Oscillation-stopping capacitor (OUT4, OUT8)
When controlling the constant voltages, it is necessary to place capacitors between the OUT pins to stop
oscillation. See and check the capacitance value between 0.01μF to 0.1μF. Choose a capacitance value which
does not cause oscillation problems for output.
When driving at saturation, there is no need for such oscillation-stopping capacitors.
(5) GND wiring and power line capacitors : (GND×2, VCC, VB)
Connect GND (2 places) near the IC, and place the capacitors as close as possible to each of the power pins.
LB8652T
No.7896-8/8
PS
This catalog provides information as of December, 2006. Specifications and information herein are subject
to change without notice.
Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the
performance, characteristics, and functions of the described products in the independent state, and are
not guarantees of the performance, characteristics, and functions of the described products as mounted
in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an
independent device, the customer should always evaluate and test devices mounted in the customer's
products or equipment.
SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any
and all semiconductor products fail with some probability. It is possible that these probabilistic failures
could give rise to accidents or events that could endanger human lives, that could give rise to smoke or
fire, or that could cause damage to other property. When designing equipment, adopt safety measures
so that these kinds of accidents or events cannot occur. Such measures include but are not limited to
protective circuits and error prevention circuits for safe design, redundant design, and structural design.
In the event that any or all SANYO Semiconductor products (including technical data,services) described
or contained herein are controlled under any of applicable local export control laws and regulations, such
products must not be exported without obtaining the export license from the authorities concerned in
accordance with the above law.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, or any information storage or retrieval system, or
otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
Any and all information described or contained herein are subject to change without notice due to
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification"
for the SANYO Semiconductor product that you intend to use.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not
guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and
reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual
property rights or other rights of third parties.