光缆结构及工艺的发展- 惠州市汇蒙通信线缆有限公司湖南销售中心 ...
光缆结构及工艺的发展 [原创 2010-04-28 16:28:11]   

一、通信光纤起源于PPB级的超净材料

  1960年,梅曼(T.H.Maiman)发明了红宝石激光器产生单色相干光使利用光调制进行通信成为可能。后来利用氦氖激光器通过大气传输一路彩色电视。但大气运输受到气候变化温度不均等严重干扰又必须使收发两端直线可见在地球上实在不太方便。它却在星际空间通信测量,显示了优势。

  1966年,英籍华人高锟(C.K.Kao)和Hockham预见利用纯净的玻璃可以制成衰减减小于20dB/km的通信光导纤维(简称光纤)。当时无人相信德国的光学xx认为它是空想。

  但当时在Bell实验室主席深知高纯度二氧化硅的人工合成石英可利用当时集成电路基材的超纯的硅系试剂来制得。在康宁公司与英国电话研究所的合作下,利用PPb级的Sicl4等试剂于1970年首次试制成衰减小于20dB/km的石英光纤。开启了光纤通信时代的大门,为知识经济时代的通信网络找到了一种可以足足用上半个世纪以上的新型通信线材。

  37年后在遥远的东方,在中国又在重新热烈讨论如何利用天然气,空分的“尾气”来筹建超净光纤材料生产基地事宜,真可称为历史神奇的螺旋上升的奇迹。所幸的是经过30多年的探索,我国光纤光缆工作已回归认识到光纤原材料的重要性,惠州市汇蒙通信线缆有限公司已于南部以高新开发区还签订了协议共同打造{sjj}光纤材料生产基地。让我们预祝他们合作成功,为国争光。

  光缆的发展同样起源于新材料的应用。尽管光缆的发展初期借鉴的应用了许多通信电缆的材料,但至今已全套更新移植到80年代后新开发的光缆专用材料,无论是光纤的UV一次被覆涂料,光纤触变型油膏,PBT二次被覆料,不锈钢二次被覆料,玻璃钢的无金属加强芯……甚至是钢塑复合带,今天都是为光缆“量身定做”的专用料。离开了它们光缆无法制造。

  二、光缆结构及工艺的发展

  按高级汉语词典通俗的解释:

  “光缆OpticalfiberCable是由许多根经过技术处理的光学纤维组合而成的缆,用来传送光信号”。该定义比较粗糙,1982年在“通信电缆”一书中提出了更准确的定义:“光缆是为了满足光学、机械或环境的性能规范而制造的,它是利用置于包覆护套中的一根或多根光纤作为传输媒质并可以单独或成组使用的通信线缆组件”。根据上述定义可引伸出光缆设计制造的三要素:

  即:1)保持光纤传输参数的稳定。

  2)保证在使用场合下设计的工作寿命期内各种机械性能可靠,耐环境性能稳定。

  3)确保光缆在制造、施工、接续、运行、维护的总体经济性。

  早期的通信光缆是借用和模仿原有通信电缆的结构与工艺。电线电缆通常是用“拉、包、绞”三种结构工艺的巧妙结合在历史上已形成200多系列,上千万种品种,数百万个规格的大类产品。

  光缆技术的发展汲取了电缆技术的精华,并根据光纤(特别是石英光纤)的特性创新发展成具有明显特征的一门新技术。

  2.1 保持光纤传输参数的稳定

  光纤在传输原理上来看,有别于对称、同轴两大类通信电缆,它是一种传送光波(1013~1014赫芝)的弱导介质波导。在宏观的物理现象分析上可采用全反射原理。即可将光看成是由光子组成的光(粒)子流,将各种外力、温度……的作用看成光子与声子的相互作用。光纤既然是一种弱导介质波导,而且这种尺寸较小的介质波导在外力的作用下波导结构(芯层与包层的界面)很容易产生形变,因而会导致传输参数的变化,造成拉细、微弯、宏弯等现象,从而引起附加衰减的产生和色散的变化。实际上在许多应用场合,石英光纤本身又是一种很灵敏的分布式传感器,它能显示出±0.01℃及约数百Pa级的微应力变化。简而言之,就是要设法在短期外力作用下光纤应力小于允许值,在长期来看对光纤的各种应力应趋近于零。

  鉴于在电缆中的导体通常都能承受相当大的抗拉强度,当导体材料未超过屈服强度时,导电性能不会有显著的变化,所以电缆中的拉力往往靠缆芯中的导体来承受。只存在有特大抗拉力或其他外力要求场合下再用铠装来承受部分拉力。而光缆则不然,光缆中的光纤一旦受到拉力的作用就会引起应变,首先导致色散的增加,接着就会引起附加衰减。所以为了确保光缆中光纤在受到拉力时仍能保持传输参数的稳定,则必须引入一种新的承受拉力的材料——加强芯或称强度元件。这种承受拉伸负荷的元件若放在缆芯中间则通常称加强芯或内铠元件,在护套内或缆芯周围就简称加强件。

  当光缆受张力负荷时,按平行构件模型的受力原理,光纤的应变量与光缆的应变量是相等的。在这种条件下,光缆中各元件承受的张力量由其元件的弹性模量与截面的乘积(EiAi)值来分配。

  为了使光纤所承受的应力尽量减小,必须要求符合下列要求:即加强构件的EsAs值远远超过光纤的EfAf值。

  ……………………………………………………(1)

  式中:Ei为光缆中各元件的杨氏模量;

  Ai为各元件的横截面积;

  Ef为光纤的杨氏模量;

  Af为光纤的横截面积;

  N为光缆中的光纤数目。

  
表1 加强构件材料的主要性能


注:①温度范围:+5℃~+150℃;②温度范围:0℃~+100℃。

  由于加强构件线膨胀系数与光纤的线膨胀系数不同,当外界温度条件变化时,光纤可能要产生纵向压缩应变,从而导致微弯衰耗的增加。这样不同材料的热性会影响到光缆运行的温度范围和使用环境。究其根源是因为光纤的线胀系数为1.8×10-6,而通常塑料的体胀系数10-4,即要大100倍以上。要想获得良好的温度特性的{zj0}方法是选用低线胀系数的涂复层,例如:硅橡胶(10-5)和芳纶来做包层和加强件,这就是一种紧包室外光缆的典型结构。图1所示为如何保证光纤传输参数稳定的与诸因素现象相互关系的图解。



图1 光缆中光纤衰减色散变化与诸因素、现象的关系


  要使光缆中的光纤不受力或少受力的基本方法有两大类:1)紧套:将体胀系数接近光纤的软材料包绞在光纤外以便吸收应力——俗称“沙发”原理。2)松套:将光纤先套包在较硬的二次被复管内并留一定的余长(ExceededLength),简称EL,让光纤在空管中以自由正反螺旋悬浮着放置。俗称“弹簧”原理。合理、巧妙、xx的控制余长是光缆制造设计水平的重要体现。

  获得余长的另一个途径就是围着加强件,扭绞。余长设计是光缆制造的十分重要内容。下面试以OPGW的光纤余长设计为例作一介绍。



 

 

  

图2 OPGW光纤余长设计示意图


  图1中的光纤在放入纵包焊接的不锈钢管内通常很难获得正值的余长,通常在该工序中还要填充冷油膏,所以可设定该工序后光纤在有一定张力条件下拉入钢管会有小量的负余长或零余长。此时光纤长度略小于或等于钢管的长度。

  正余长的获得主要靠巧妙排列辊轮的挤轧获得(例如为2‰),此时的余长是光纤相对于钢管而言的,即光纤要长于钢管2‰。

  将钢管绞在外层时可获第二次的余长,这个余长是光纤相对于缆芯而言的。

  在缆芯及OPGW上盘时都要有一定张力,在此张力下光缆(OPGW)受力伸长,而光纤则因有正余长而没受力,所以,相对于OPGW正余长值略有减小。同理在敷设时也有少量余长减小。OPGW架线后要张拉即用绷紧来减小弧垂。该工序后余长减小值{zd0}。

  架设之后由于寒暑交变,余长自然也会变化,随着OPGW架设时间增长,由于蠕变作用余长还会减小。20年后希望能保持有微小的正值(例如0.3‰)。

  2.2保证在设计的工作寿命期内各种使用场合下机械性能可靠,耐环境性能稳定

  石英光纤是一种脆性的玻璃材料。它的破断机理与金属、塑料等一般结构材料xx不同。石英在自然界中往往是以结晶态的晶体出现。石英光纤则是各向同性的无定形体。在微观上来看它的表面布满各种深浅不同(通常是按韦帕尔规律分布)的格里弗斯裂纹。

  光纤的断裂强度σ与表面{zd0}缺陷深度的关系可用格里弗斯关系式表示:

  …………………………………………(2)

  式中:为几何尺寸常数;

  为临界应力强度因子。

  当表面微裂纹的深度超过一定极限值时,光纤就会断裂。这和用钻石刀划玻璃后稍微用力一弯就能获得整齐光滑的断面的原理是一样的。

  影响光纤寿命的三个因素:

  提高光缆的寿命问题,最根本的是要提高光纤的寿命。影响光纤寿命的原因主要有:1)光纤表面的微裂纹的存在和扩大;2)大气环境中的水和水蒸气分子对光纤表面的浸蚀;3)不合理的敷设光缆时残留下来的应力长期作用等。由于上述原因,使得以石英玻璃为基础的光纤机械强度逐渐降低,衰耗慢慢增大,{zh1}使光纤断裂,终止了光缆的寿命。

  众所周知,在纤维表面上总是会存在着微裂纹,在大气环境中发生慢裂纹生长,使裂纹不断地扩大,使光纤的机械强度逐渐退化。例如,一根125μm直径的裸石英光纤,经过3年以后的慢变化,使光纤的抗拉强度从180kpsi(相当于1530g抗拉强度),降到了60Kpsi(相当于510g抗拉强度)。光纤这种慢变化的降低机械强度的机理是:当光纤表面有微裂纹(或缺陷)时,在受到外来应力的作用,并不会立即断裂,只有施加应力达到裂纹的临界值时,纤维才会断裂。而石英纤维承受到一个小于临界值的恒定应力时,表面裂纹会发生缓慢的扩大,使裂纹的深度达到断裂的临界值。这就是纤维机械强度退化的过程。石英光纤机械强度的退化是由于承受到的应力与大气环境中的水和水蒸气分子侵蚀的联合作用造成的。裂纹末梢受到应力的化学键和水(H2O)发生化学反应如下:

  │ │ │ │

  —Si—O—Si + H2O → —Si—OH + HO—Si— …………(3)

  │ │ │ │

  这里生成了硅醇而使化学键断裂,而存在的水分子又进一步加强了裂纹末梢最邻近的那些化学键上的应力集中,并造成化学键的断裂。这种应力与水的联合作用就是所谓的应力侵蚀或静态疲劳。应力侵蚀造成裂纹扩大的速度V为:

  …………………………………………(2)

  式中:K—应力强度因子;A是裂纹扩展系数;n是疲劳参数,它是表征应力侵蚀的环

  境参数,也是{wy}可以通过光纤涂复和光缆制造可改变的参数。

  针对上述三大寿命因素,在制作光缆采取了三大措施:

  1.一次被复光纤的强度筛选,将一些已有很深裂纹区段的光纤通过连续强度筛选加以剔除,此举也可剔除由于制棒工艺缺陷而造成的气泡、夹杂等影响强度的薄弱点。

  筛选张力视使用场合按可靠性概率设计给定,参见表2。

  
表2 国际上光纤强度筛选的一般规定


2.光纤表面涂覆一层可防止水气侵蚀的一次被复,通常是涂紫外固化的丙烯酸树脂,亦可涂上一层有一定压缩应力的无机涂层,例如:TiO2、TiC等。若光纤选用了密闭的无定形碳涂层或密闭的金属涂层则隔潮性更佳,光纤的疲劳参数(n)值可达100—300。对于通用光缆n值>20的紫外固化涂层已经足够。

  3.光缆结构工艺必需保证“零应力”,即无明显应变。例如在YD/T901-2001光缆标准中规定光纤的应变不大于0.005%时可判为无明显应变。

  氢损是指由于氢渗入纤芯引起1.38μm附近长波长衰减明显增长,在上世纪80年代曾一度成为光纤无法长期应用的巨大障碍。它首先在将光纤密封在金属护套中的海缆中陆续发现,之后在各种陆上光缆中陆续也发现有类似的报道。国内也曾出现误用析氢严重的填充油膏而成批光缆报废的“事件”。

  采用油膏填充来增强非xx密封护套电缆绝缘可靠性的重要技术。油膏填充曾使全塑市内通信电缆的工作寿命成倍地提高。80年代初该技术应用于光缆制造。1985年上海电缆研究所成功试制成热油膏填充的松套层绞式光缆,隔年首批填充式光缆应用于上海郊县电信局线路。

  油膏填充既可为光缆多添一种能吸收机械外力的缆芯衬垫介质(犹如多加一个“水床”),又可起到防水的另一屏障。实践证明选用松套内外填充光缆的可靠性有极大的提高。后来在89年起又引入了既防水又与光缆材料相容的无析氢的可冷填充的“触变”(Thixotropy)油膏。这种油膏在静止时粘度高,不会滴流,而在受搅拌后粘度迅速大幅度降低,可允许在室温下顺利填充到塑料或钢质二次被复管内。这种内外填充的光缆还具有{jj0}的纵向水密性。在线路上遇到护套破损的事故时能阻止水沿纵向沟隙扩散。渗水性能已列为YD/T901-2001核心网用光缆——层绞式通信用室外光缆的重要性能指标之一。该标准第4.3、4.4规定,1m水头加在光缆的全部截面上时光缆应能阻止水纵向渗流。

  对于有一定防潮性能粘结护套的光缆选用有强力吸水作用(吸水增长可达30~100倍)的超级阻水粉(如SAP聚丙烯酸脂)及由它制成的阻水纱,阻水带亦可起到隔水的作用,这种“干式”的光缆施工时更方便,更干净。

  选用合适的光缆护套是保证光缆获得耐环境性能稳定的重要因素,也是确保光缆使用安全可靠的保证。

  必须根据光缆实际敷设的环境选用拥有合适护套的光缆型号。首先要区分光缆是在户内还是室外。室内主要选用各种软光缆,光纤{zh0}选用耐弯性能好的G657型。在室外使用场合敷设的方式条件众多,可参照YD/T901-2001所推荐的表3合理选用(参见表3)。

  
表3 各种型式的适用敷设方式和特殊条件



注:在“适用敷设方式和条件”栏中△表示适用,∨表示可用。

  注:在“适用敷设方式和条件”栏中△表示适用,∨表示可用。

  2.3确保光缆施工、制造、接续、维护、运行总体的经济性

  光缆仅是光纤通信线路网中的一个组成部分,鉴于它的长度长,使用环境复杂,占线路总成本的1/3到1/2左右,所以它是决定通信线路总体成本的重要因素。

  光缆的型号、结构……的设计与选择必须从系统总体的优劣加以考虑。

  首先是正确合适的光纤的选择,其次是结构与工艺的选择。

  由于光纤的成本是光缆成本的重要组成部分,吸取各种现有石英光纤制造工艺的优点而发展的高速优质的综合新工艺,将会为大幅度降低光缆成本铺平道路。要降低光缆成本,首先必须在保证满足性能规范的前提下尽可能简化结构;其次是材料要力求价格低廉,工艺简便可行,加工速度快,合格率高。结构、材料和工艺是光缆制造中3个相互关联的因素。三者的{zj0}配合,才可得到高质量、高效率、低成本的产品。光缆的结构繁多,在性能一致前提下,哪种总体成本{zd1},哪种就能发展。从结构来说,能用一次绞的就不用二次绞,能用一次被覆的就不用二次被覆,能用小尺寸的就不用大尺寸的,能用轻铠装的就不用重铠装的。应当指出,近年已十分成熟的高速光固化的丙烯酸一次被覆光纤有很好的经济效益。光固化涂料的一次被覆光纤外径小,一般仅250μm,比原来热固化硅橡胶的要小一半,而拉丝速度却可提高5倍。另外,这种光固化涂料的外表面硬而光滑,摩擦系数小,为光纤的分色、一管多纤、多纤成束、成带和快速连续奠定了新的基础,也为简化与优化光缆结构提供了条件。如今光纤芯线的细径化、色谱化,光纤单元的小型化以及多样化,已成为不可抗拒的新潮流;陆上光缆的外径一般均不超过20mm。

  就材料而言,可用普通材料就不用xx材料。例如,聚丙烯与尼龙相比,前者的耐寒性能较差,但在管道及直埋使用场合,仍不失为二次被覆材料中之姣姣者,因为聚丙烯的价格仅为尼龙的1/10。又如填充膏选用石油膏类,也要比硅酯类价廉得多(仅为后者的1/10)且性能不比后者差,填充性能也好,因而颇受各方欢迎。

  总的来说,光缆的工艺力求采用已成熟的流水线工艺。例如,将拉丝—强度筛选—二次被覆串联成线,或将拉丝、绞制联合成一工序,均有利于提高效率与质量。采用高速简便的束绞,也比正规绞更经济。

  在选择材料及制定工艺时,应依照实际情况(地理、环境、使用现状、发展规划、何提供的条件、生产设备及技术等)而因地制宜。例如,日本由于地下管道健全,充气维护系统齐全,所以大都采用充气维护的光缆结构与线路。在我国,由于通信发展较晚,全国性自动通信网与数字通信网尚未建成,许多地区供电采用充气维护困难大、投资大,故各种长途、市内的用户通信光缆以采用填充光缆更为经济实用。

  光缆线路的经济性还反映在施工、维护的方便及可靠方面。光缆在现场的接续及施工简便是光缆设计中特别要注意的问题,除要考虑光纤的单根熔接和保护之外,目前普遍在推广一次多根光纤熔接或高速单根光纤的熔接,甚至已推出一次可同时测试8~12根光纤的测试装置。最近还出现了在工厂预接续技术及大长度光缆现场布放施工技术,为施工的简化开辟的新途径。

  光纤带光缆是近十几年光缆结构工艺发展的新高峰,是一种具有密集度、接续方便、识别容易等优点。它已成为接入网骨干环路大芯数光缆的{sx}结构。图3所示是我国光缆中的光纤密集度增加的趋势,在此技术领域我国{lx1}。



图3 光缆中光纤密集度的增加



  1994年我国上海电缆研究所利用原有拉丝、压力涂复制备独辟蹊径用商用250μm外径的石英光纤采用超薄紧贴的涂复工艺研制出厚度仅为260μm的超薄光纤带,一举奠定了我国光纤带的标准厚度较国际标准更薄的工艺基础,并在1995年IWCS年会发展论文,获得一致好评。我国还研制了光纤带SZ绞松套管式光缆,四川汇源还为此获得国家专利金奖。

  三、光缆的制造中的主要原材料及其产品质量认证设想

  电缆的工艺概括地可用“拉、包、绞”三个字来表征。拉:粗的拉拉细。包(涂包、纵包、挤包),绕包都是包。绞:束绞、层绞、扭绞、成缆……亦全算绞。通过“拉、包、绞”的巧妙排列组合组合成了形形色色、丰富多彩的电缆品种。光缆既然脱胎于电缆,其主要的工艺亦必然与电缆相类似。由于光纤的尺寸标准、通用性好,刚性强,几何尺寸控制严格,又是一种只要一根纤就能形成回路的介质波导,所以它的“拉、包、绞”技术与工艺就更有特色。

  光缆技术发展过程中工艺上一直不断创新,追求高效(高速)、高精,并在实践中已创造了许多工艺上的{zg}记录:

  拉丝:一根光纤棒可拉的整根连续长度为5000000米,无模拉丝时的缩径比高达1440000倍(棒纤截面之比)。

  着色:{zg}线速可达4000—5000米/分

  成缆:SZ紫纱头的转速高速6000转/分

  高速运动物体拥有巨大的惯性,便于生产高均匀参数的(例如外径)的线缆元件与产品。例如单模光纤的模场直径的容差只有0.7μm,而涂复层的外径应控制在245±10μm之内。

  光缆的主要制造工艺按流程来分有下列主要工序:

  1.拉丝及一次被复

  2.强度筛选

  3.着色

  4.并带

  5.二次被复(包括油膏填充)

  6.成缆(包括油膏填充)

  7.护套(包括油膏填充)

  光纤光缆制造工艺与电线电缆十分相似,它们都是靠导体或光纤作为牵引载体(类似传送带作用),利用围绕牵引中心轴线旋转的盘具或装置进行巧妙的包绞来完成的。其中专用设备的开发与应用及工模具的创新与管理是高超工艺的重要保证。与电缆工艺{zd0}的不同是工艺过程中的在线的张力及余长的精细测量与控制必须十分精细。通常光线放线都是主动放线,而且要控制在数克的精度范围之内。图5所示是半干式带纤光缆的生产流程示意图。

  松套层绞式是世界上最通用的结构。当光缆内光纤芯数较多时选用光纤带结构。图4是光纤带松套层绞式的96芯光缆的示意图。这是一种半干式的结构。最近半干式的光缆较受欢迎,因为改用阻水带代替了阻水缆膏,使施工更为方便。通常以往核心网用的光纤带所含光纤数均在6芯以下,现已提高到12—16芯并可xx避免任何附加衰减。

  图4为96芯半干式光纤带松套层绞式光缆的生产流程图。



图4 96芯半干式光纤带松套管光缆结构[1]


我最近在玩和讯财经微博,很方便,很实用。
一句话,一张图,随时随地与我分享理财心得与亲历见闻。
点击以下链接xx,来和我一起玩吧!

郑重声明:资讯 【光缆结构及工艺的发展- 惠州市汇蒙通信线缆有限公司湖南销售中心 ...】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——