科学家成功操控单原子中电子自旋方向_天涯博客_有见识的人都在此_天涯社区






 不同的电子自旋方向导致单个钴原子具有不同的形状。



虽然许多科学家们认为,在制造下一代更快、更小、xxx的计算机和高技术设备上,新兴的电子自旋技术将胜过传统电子技术,但电子自旋对单原子的影响至今尚无从观察。而{zx1}推出的《自然—纳米技术》(Nature Nanotechnology)网络版上,美国俄亥俄大学和德国汉堡大学的科学家们展示了他们首次获得的电子不同自旋状态下的单个钴原子图像。

为获得这个图像,研究人员使用一台在其探针的{jd0}涂覆有金属铁的特制隧道扫描显微镜,对一个金属锰盘上的钴原子进行了操纵。借助这个特制探针,通过改变单个钴原子在锰板表面的位置,使钴原子中电子自旋的方向产生了变化。捕捉到的图像显示,当原子中的电子自旋方向向上时,整个原子的形状呈单突状;若自旋方向向下,则整个原子形状呈双突状,且两者等高。

这项研究表明,通过对单个金属原子的操控,科学家具有了探测和操纵单原子中电子自旋方向的能力,这将极大地影响纳米级磁存储器、量子计算机和自旋电子器件的未来发展。研究小组主要成员之一、俄亥俄大学纳米和量子研究所的物理和天文学副教授萨瓦·拉表示,电子的不同自旋方向可代表数据存储的不同状态,目前计算机存储器单元需要的原子数量成千上万,未来也许用单个原子就能满足需求,同时将计算机的能力提高数千倍。而且,与电子器件不同的是,基于电子自旋的器件不会产生热量,从而达到更少的功率损耗。

此次实验是在10开尔文低温的超真空环境中完成的。科学家表示,要想将电子自旋应用于计算机存储器中,必须能在室温下探测到自旋现象。不过,文章的主要作者、汉堡大学的安德烈·库柏兹卡认为,这项新完成的研究为未来的应用提供了途径。在研究中,研究人员不仅使用了新技术,还使用了一个带有自旋的金属锰板,这使得他们可对钴原子的电子自旋进行操纵。

近代人类物质文明大都可以归结为两个字——电子。以电荷为载体,我们先是鼓捣电流,尔后又折腾信息。电子的带电特性已足足让我们快活了200年,而电子的自旋特性或将滋润我们未来200年。一个原子能干成千上万个原子的活儿,萨瓦·拉描述的这种计算机如果说昨天还只是一种猜想,那么今天透过这张照片,我们则真切地看到了隧道尽头的光亮

Nature Nanotechnology
Published online: 25 April 2010 | doi:10.1038/nnano.2010.64


Imaging and manipulating the spin direction of individual atoms

David Serrate1,4, Paolo Ferriani1,2, Yasuo Yoshida1, Saw-Wai Hla1,3, Matthias Menzel1, Kirsten von Bergmann1, Stefan Heinze1,2, Andre Kubetzka1 & Roland Wiesendanger1


Abstract

Single magnetic atoms on surfaces are the smallest conceivable units for two-dimensional magnetic data storage. Previous experiments on such systems have investigated magnetization curves1, 2, the many-body Kondo effect3, 4 and magnetic excitations in quantum spin systems5, 6, but a stable magnetization has not yet been detected for an atom on a non-magnetic surface in the absence of a magnetic field. The spin direction of a single magnetic atom can be fixed by coupling it to an underlying magnetic substrate via the exchange interaction7, 8, but it is then difficult to differentiate between the magnetism of the atom and the surface. Here, we take advantage of the orbital symmetry of the spin-polarized density of states of single cobalt atoms to unambiguously determine their spin direction in real space using a combination of spin-resolved scanning tunnelling microscopy experiments and ab initio calculations. By laterally moving atoms on our non-collinear magnetic template9, the spin direction can also be controlled while maintaining magnetic sensitivity, thereby providing an approach for constructing and characterizing artificial atomic-scale magnetic structures.



1.Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg, Germany
2.Institute of Theoretical Physics and Astrophysics, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
3.Nanoscale & Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701, USA
4.Present address: Instituto de Nanociencia de Aragón, University of Zaragoza, 50018, Spain
Correspondence to: Andre Kubetzka1 e-mail: kubetzka@physnet.uni-hamburg.de


Physicists capture first images of atomic spin

----(PhysOrg.com) -- Though scientists argue that the emerging technology of spintronics may trump conventional electronics for building the next generation of faster, smaller, more efficient computers and high-tech devices, no one has actually seen the spin—a quantum mechanical property of electrons—in individual atoms until now. In a study published as an Advance Online Publication in the journal Nature Nanotechnology on Sunday, physicists at Ohio University and the University of Hamburg in Germany present the first images of spin in action. ------

The researchers used a custom-built microscope with an iron-coated tip to manipulate cobalt atoms on a plate of manganese. Through scanning tunneling microscopy, the team repositioned individual cobalt atoms on a surface that changed the direction of the electrons' spin. Images captured by the scientists showed that the atoms appeared as a single protrusion if the spin direction was upward, and as double protrusions with equal heights when the spin direction was downward.

The study suggests that scientists can observe and manipulate spin, a finding that may impact future development of nanoscale magnetic storage, quantum computers and spintronic devices.

"Different directions in spin can mean different states for data storage," said Saw-Wai Hla, an associate professor of physics and astronomy in Ohio University's Nanoscale and Quantum Phenomena Institute and one of the primary investigators on the study. "The memory devices of current computers involve tens of thousands of atoms. In the future, we may be able to use one atom and change the power of the computer by the thousands."

Unlike electronic devices, which give off heat, spintronic-based devices are expected to experience less power dissipation.

The experiments were conducted in an ultra-high vacuum at the low temperature of 10 Kelvin, with the use of liquid helium. Researchers will need to observe the phenomenon at room temperature before it can be used in computer hard drives.

But the new study suggests a path to that application, said study lead author Andre Kubetzka of the University of Hamburg. To image spin direction, the team not only used a new technique but also a manganese surface with a spin that, in turn, allowed the scientists to manipulate the spin of the cobalt atoms under study.

"The combination of atom manipulation and spin sensitivity gives a new perspective of constructing atomic-scale structures and investigating their magnetic properties," Kubetzka said.





输入您的评论:(不支持HTML标签)

验证码:      段首缩进两个汉字:

    
本文所属博客:
引用地址:


郑重声明:资讯 【科学家成功操控单原子中电子自旋方向_天涯博客_有见识的人都在此_天涯社区】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——