便携式设备电池充电安全系统少不了保险丝的作用,我们可以使用便携式产品的电池充电,我们也可以通过手机对附件进行供电,比如调频收发器等外部附件。加强充电、供电保护,使电池的安全性更高、可用时间更长、可用电压更宽、充电时间更快回、生命周期更长,是移动设备发展的一个趋势。
我们知道系统的保护仅仅依靠充电器本身是不够的,需要添加额外的设想保护方案(Box)。相应的保护方案有两种:{dy}种是将设想保护方案集成在充电器IC里,第二种是采用独立的外部器件来进行保护,目前的大趋势是采用独立的外部器件。
针对对直接充电,设想保护方案首先应该解决浪涌电流效应的问题,其次应该解决正向和反向的过压保护,这两个保护功能是必须要有的。此外,还包括直接充电的过流保护以及电池电压的监测,这两项保护功能是可选的。
浪涌电流效应。由于寄生电感和输入电容的影响,充电器在热插入时可能产生高压的振铃,损害集成电路,此时我们需要控制保护方案内部的MOSFET,使系统内部的电流和电压不超过额定值。
正向和负向过压保护。由于AC-DC的瞬态、适配器故障或错误,保护方案的输出不能超过便携系统的{zd0}额定电压,所以要保护源自墙式适配器的过压保障,需要具备+28V的正向过压保护以及-28V的反向过压保护。只有在过压比较器的输入比系统的{zd0}额定电压低的时候,保护器件才能保持导通状态。
直接充电通道的过流保护。如果直接充电通道出现过流的话,可能会损坏系统。但是过流保护特性应该为可选的,主要是因为:首先,充电电路内的充电电阻会检测充电电流,并且由充电IC来控制该充电电流;其次,AC/DC转换器的输出能力是有限的,如果出现过流,AC/DC转换器的电压会急剧的跌落。
电池电压监测。截至目前为止,锂离子电池的{zd0}电压为4.35V,在电池组中集成了电压监测功能,某些应用甚至集成了两个电池包的保护方案,而且充电电路也会监测电池电压,因此电池电压监测可以增加到设想的保护方案当中。但由于在系统中已经有多处提供了这种保护功能,因此该功能应该是可选的。
综上所述,设想保护方案(Box)必须具备下列特性:
1. 过压锁定能力。只有在总线电压低于系统的{zd0}额定电压的时候,保护器件才应该是导通的。如果出现过压,保护器件应该处于断开状态以保护内部的系统。
2. 具备抗过压能力。采用墙式适配器充电的时候为+28V,利用USB充电的时候为+20V。
3. 具有电流通过能力。利用墙式适配器充电的时候,电流可能达到1A甚至2A;在使用USB充电时,{zd0}电流为500mA,
4. 能够对浪涌电流进行控制。
5. 保护器件与充电IC应该相互独立。
如果具备了以上特性,直接充电通道将会得到良好的保护。
反向供电通道(从电池到附件)
对于反向供电通道来讲,设想的解决方案(Box)必须解决以下几个问题:电池放电、反向过流、反向浪涌电流、回路保护,并尽量降低反向电路的电压电路。
电池放电。当输入电压低于电池电压时,应该避免电池放电,因为此时附件可能是没有插入的。这时应该采用背对背的解决方案,在Vin小于Vbat的时候,防止电池漏电。只有在检测到附件时,才支持反向供电。
建议解决方案
反向过流保护功能。当连接错误的附件或有缺陷的附件的时候,电池仍然有可能放电到附件,而且反向放电的电流可能超过充电通道的电流通过能力。由于充电器无法检测到反向电流,因此需要增加另外的模块来检测反向电流。
反向浪涌电流抑制。插入附件的时候,如果没有电流保护方案,可能从电池流出极高的浪涌电流,而且可能产生过高的振铃,从而损害器件,所以必须采用电流监测功能来控制反向MOSFET的门极,从而xx振铃和浪涌电流。
回路保护。如果附件出现直接回路,可能会瞬时涌现源自电池的极高电流,所以保护器件应该提供过流保护,而且可以通过外部电阻对电流进行设置以适应不同的系统要求。另外,保护器件应该具有自动恢复功能,即当外部回路状况xx之后,系统会自动地恢复工作。故而选择PPTC自恢复过流保护器是目前最为合适的过流保护期间。万瑞和生产的PPTC产品缩写为WHPTC,可以满足该需要。
从电池到外部附件的电压电路。必须降低电池和附件之间的损耗,如果电压电路过高的话,会产生额外的损耗,影响到电池的可用电压。
更多信息来源:http://www.zschaoying.com/