俄美科学家成功合成了一种拥有117个质子的新元素,它可能就是科学家一直寻找的第117号元素(ununseptium),这将填补目前已被发现的第116号和118号元素之间缺失的“一环”。相关研究论文将在近期出版的《物理评论快报》上刊发。
以俄罗斯杜布纳联合核研究所尤里·奥加涅相为学术带头人的国际科研小组,使用该研究所的粒子回旋加速器,用由20个质子和28个中子组成的钙48原子,轰击含有97个质子和152个中子的锫249原子,生成了6个拥有117个质子的新原子,其中的5个原子有176个中子,另一个原子有177个中子。 杜布纳联合核研究所于2000年和2006年分别合成了第116号和迄今为止最重的第118号元素。第117号新元素成功合成后,从第112号至118号元素7种相邻新元素的产生都出自同门,这不能不说是人类科技史上一大奇观。 该项科研成果也支持了理论界长期以来的假设:新合成的元素会越来越重,它们最终会变得更加稳定,其寿命也比迄今为止的人造元素更长,这将证实“稳定岛”的存在。第117号新元素的相关实验证实了这一观点。奥加涅相小组对新元素进行放射性衰变分析后认为:“为预测超重元素"稳定岛"的存在提供了实验证据。” 20世纪60年代,科学家提出了“稳定岛”理论。该理论认为,在质子数为114、中子数为184的区域附近存在一些衰变相对稳定的元素,这就是超重元素稳定岛。在这个“稳定岛”内的超重元素是相当稳定的,它们的半衰期甚至可能达到1015年。但到目前为止所生成的超重元素及其同位素的寿命都很短,大多在秒和毫秒的量级。 据悉,该研究的各项工作分别在俄罗斯杜布纳联合核研究所、美国加州劳伦斯利弗莫尔国家实验室、美国橡树岭国家实验室、范德堡大学、内华达大学完成。 1869年问世的门捷列夫元素周期表是宇宙的基本规律之一,也为人类认识自然提供了一把刻度精准的尺子。紧握这把尺子,核物理学家于上世纪60年代提出了“稳定岛”理论。迄今为止,人类能够合成重元素,但却始终没有登上“稳定岛”。而“岛”上的无限风光正是科学的无限魅力,她将刷新人类物理学、化学、天体演化乃至宇宙观的所有基本“页面”。成功地合成117号元素,也许能够成为通往“稳定岛”的一座航标。 美国物理学家正在制造一个中子静电悬浮室,用于将一滴液态金属悬浮在半空中 美国物理学家正在制造一个中子静电悬浮室,用于将一滴液态金属悬浮在半空中,进而观察金属液滴冷却成玻璃过程中的原子活动。悬浮室将帮助科学家揭开玻璃谜团。玻璃是一种令人迷惑不解的形态,物质属性更接近液体而不是固体。通过悬浮室实验,物理学家希望进一步了解物质从液体变成玻璃过程中原子到底发生了什么。 我们通常简单地认为,玻璃就是安装在窗户上的东西,但实际上,玻璃也是一种物质形态,就像气态、液态或者固态一样。所有液体都能变成玻璃,只是难易程度不同罢了。美国华盛顿大学圣路易斯分校物理学家肯尼斯・凯尔顿表示:“4000年前,生活在美索不达米亚的人就开始使用玻璃,但我们至今仍不了解液体如何变成玻璃的过程。这是最有趣的动力学过程之一。” 此次研究中使用的液体为金属,例如钛、锆、镍、铂以及合金(两种或更多种金属的混合物)。如果能够快速冷却,这些液态金属也能变成玻璃,而不是固体。关键的问题是必须让这些液态金属处于不与容器等其他物质接触的状态。使用容器更容易让液态金属变成固态而不是玻璃。为了进行这种实验,液态金属必须在真空中漂浮,不接触其他任何东西。这也就是为什么要使用悬浮室。 中子静电悬浮室造价165万美元,制造完毕后将在美国田纳西州橡树岭国家实验室投入使用。项目组领导人凯尔顿及其同事――橡树岭国家实验室和田纳西州大学的江上武(Takeshi Egami)、爱荷华州大学的艾伦・高曼以及橡树岭国家实验室的王勋利(Xun-li Wang,音译)――希望能够在大约3年内完成制造并投入使用。 悬浮室将使用电极诱导金属液滴表面的电荷。在此之后,电磁场将负责让液滴在一个点上保持悬浮状态。橡树岭国家实验室的另一台机器“散变中子源”将产生中子束,目标直指悬浮液滴。(中子是原子核中的电中性亚原子粒子)研究人员计划让中子担任光线的“替身”,形成一个中子显微镜用以研究液体。穿过液滴过程中,中子能够与液滴中的原子发生相互作用。当中子在液滴另一面出现时,它们会因液滴中的原子排列呈现出一种独特的结构。 凯尔顿说:“我们希望悬浮室实验能够为我们提供有关液体中从未被研究的东西的信息。如果原子在液体中移动,我们能够通过中子穿过的方式了解这种移动。”在室温下以固态存在的金属必须被置于高温环境以保持液态。研究人员计划采用激光束照射液体样本以保持加热状态,而后调整激光束能量进而调节温度,让液态金属冷却成玻璃。 物理学家希望在不同形态下比较金属的微观结构,以确定哪些因素决定形态差异。凯尔顿表示:“如果对从液体变成玻璃的结构差异进行观察,我们就能发现差异,但这种差异非常微妙。” 固体拥有组织非常严密的结构,原子有规则地排列并且不断重复,就像是一个个积木。随着时间流逝,这种结构仍比较稳定。相比之下,液体中的原子排列则较为混乱,以不断变化的不规则结构聚集在一起。从表面上看,玻璃更像是固体,但内部原子排列却更接近液体。它们也会发生变化,只是速度比固体更为缓慢,这也就是为什么旧玻璃靠近底部的地方更厚。随着时间推移,玻璃的一些区域在引力作用下向下“渗漏”,但这一过程非常缓慢,很难被观察到。 物理学家表示,虽然玻璃中的原子在一定程度上随机排列,但它们实际上要比表面看起来更为稳定。绝大多数原子可能被它们的邻居禁锢在一定位置,对于移动的原子来说,其周围的原子也不得不发生移动。因此,玻璃流动的{wy}原因就是内部大量原子的共同移动。 凯尔顿及其团队在悬浮室进行的早期实验显示,原子以有序结构聚集在一起可形成岛状物。这些岛状物似乎可以干扰在固体中形成的更大结构,它们的存在阻止液体变成固体,让液体保持一种较为混乱的状态。但对于岛状物如何发挥作用或者所有玻璃中是否都存在这种现象,研究人员并没有达成一致意见。他们希望未来的悬浮室实验能够提供新线索。 |