(二)微影(Photo-Lithography)
1、正负光阻
微影光蚀刻术起源于照相
制版的技术。自1970年起,才
大量使用于半导体制程之图形转写复制。原理即利用对紫外线敏感之聚合物,或所谓光阻(photo-resist)之受曝照与否,来定义该光阻在显影液(developer)中是否被蚀除,而最终留下与遮掩罩幕,即光罩(mask)相同或明暗互补之图形;相同者称之「正光阻」(positive
resist),明暗互补者称之「负光阻」(negative
resist),如图2-6所示。一般而言,正光阻,如AZ-1350、AZ-5214、FD-6400L等,其分辨率及边缘垂直度均佳,但易变质,储存期限也较短 (约半年到一年之间),常用于学术或研发单位;而负光阻之边缘垂直度较差,但可储存较久,常为
半导体业界所使用。
2、光罩
前段述及的光罩制作,是微影之关键技术。其制作方式经几十年之演进,已由分辨率差的缩影机 (由数百倍大的红胶纸【rubby-lith】图样缩影) 技术,改良为直接以计算机辅助设计制造(CAD/CAM)软件控制的雷射束(laser-beam)或电子束(E-beam)书写机,在具光阻之石英玻璃板上进行书写 (曝光),分辨率 (最小线宽) 也改进到微米的等级。
由于激光打印机的分辨率越来越好,未来某些线宽较粗的光罩可望直接以打印机出图。举例而言,3386dpi的出图机,最小线宽约为七微米。
3、对准机 / 步进机
在学术或研发单位中之电路布局较为简易,一套电路布局可全部写在一片光罩
中,或甚至多重复制。加上使用之硅晶圆尺寸较小,配合使用之光罩本来就不大。所以搭配使用之硅晶圆曝光机台为一般的「光罩对准机」(mask aligner,如图2-7)。换言之,一片晶圆只需一次对准曝光,便可进行之后的显影及烤干程序。
但在业界中,使用的晶圆大得多,我们不可能任意造出7吋或9吋大小的光罩来进行对准曝光:一来电子束书写机在制备这样大的光罩时,会耗损巨量的时间,极不划算;二来,大面积光罩进行光蚀刻曝光
前与晶圆之对准,要因应大面积精密定位及防震等问题,极为棘手!所以工业界多采用步进机(stepper)进行对准曝光;也就是说,即使晶圆大到6或8吋,但光罩大小还是小小的1~2吋见方,一则光罩制备快速,二则小面积对准的问题也比较少;只是要曝满整片晶圆,要花上数十次「对准→曝光→移位」的重复动作。但即便如
此,因每次「对准→曝光→移位」仅费时1秒左右,故一片晶圆的总曝光时间仍控制在1分钟以内,而保持了工厂的高投片率 (high through-put;即单位时间内完成制作之硅芯片数。) 图2-7 双面对准曝光对准系统(国科会北区微机电系统研究中心)。
4、光阻涂布
晶圆上微米厚度等级的
光阻,是采用旋转离心(spin-coating)的方式涂布上去。光阻涂布机如图2-8所示。其典型程序包括:
(1)晶圆表面前处理 (pre-baking):即在150°C下烘烤一段时间。若表面无氧化层,要另外先上助粘剂 (primer),如HMDS,再降回室温。换言之,芯片表面在涂敷光阻前要确保是亲水性(hydrophilic)。
(2)送晶圆上真空吸附的转台,注入(dispensing)光阻,开始由低转速甩出多余的光阻并均布之,接着以转速数千rpm,减薄光阻至所需厚度。
(3)将晶圆表层光阻稍事烤干定型,防止沾粘。但不可过干过硬,而妨碍后续的曝光显影。
一般光阻涂布机的涂布结果是厚度不均。尤其在晶圆边缘部份,可能厚达其它较均匀部份的光阻3倍以上。另外,为了确保光阻全然涂布到整片晶圆,通常注入光阻的剂量,是
真正涂布粘着在晶圆上之数十甚至数百倍,极其可惜;因为甩到晶圆外的光阻中有机溶剂迅速挥发逸散,成份大变,不能回收再使用。
5、厚光阻
德国Karl-Suss公司开发了一种新型的光阻涂布机,称为GYRSET?,如图2-9所示,其卖点在于强调可减少一半的光阻用量,且得出更均厚的光阻分布。
其原理极为单纯:只是在真空转台上加装了跟着同步旋转的盖子。如此一来,等于强迫晶圆与盖子之间的空气跟着旋转,那么光阻上便无高转速差的粘性旋转拖曳作
用。故光阻在被涂布时,其与周遭流体之相对运动并不明显,只是离心的彻体力效果,使光阻稳定地、且是呈同心圆状地向外涂布。
根据实际使用显示,GYRSET?只需一般涂布机的55%光阻用量。另外,其也可应用于厚光阻之涂布 (厚度自数微米至数百微米不等)。受涂基板也可由晶圆改为任意的工作外型,而不会造成边缘一大部份面积厚
度不均的花花外貌。
[注] 厚光阻是新近发展出来,供微机电研究使用的材料,如IBM的SU-8系列光阻,厚度由数微米至100微米不等,以GYRSET?涂布后,经过严格的烘干程序,再以紫外线或准分子雷射 (excimer
laser) 进行曝光显影后,所得到较深遂
的凹状图案,可供进一步精密电铸 (electro-forming) 的金属微结构成长填塞。这种加工程序又称为「仿LIGA」制程 (poor mans
LIGA),即「异步X光之深刻模造术」。