蒸汽参数越高,水汽品质的不良影响越明显,水处理技术不做突破就无法使机组参数提高。 2.1 水源的选择 水源是电厂维持生产的基本保障条件。在选择水源上应兼顾政策性、经济性和环保要求,更应具有超前意识。在地表水污染日趋严重的今天,选择水源不仅要考虑经济因素,更要重视持续发展及水资源短缺的限制。无论是什么样的水源,只要净化水深度处理的成本低于或相当于从厂外水源购买的新鲜水,就可以选其作为电厂的水源。因此,从这一点来说,开发污厂的中水作电厂的综合水源是我们目前有待探索的新思路。 2.2 水处理技术 (1) 锅炉补充水处理 高参数机组地表水的预处理通常采用混凝—澄—清—过滤处理。过滤一般采用传统的重力式滤池,为提高出力,可以在传统方式的基础上改造成双层、三层滤料式或双流、变孔隙式的高速过滤。活性炭过滤器可以保证有效去除有机物、游离氯,减轻对离子交换树脂的污染和氧化影响,提高整体出水水质。特别是反渗透技术成为主导的21世纪,活性炭过滤器在电厂的应用将更广泛。但目前活性炭吸附效率偏低、再生方法不理想的问题较突出。这就需要水处理设备工作者进行深入研究和开发。目前,我国600MW机组澄清处理设备多为机械加速搅拌澄清池,其优点是:反应速度快、操作控制方便、出力大。21世纪澄清池的发展思路是:要求设备处理容量大,特别是要对原水浊度变化的适应性强,处理后水质稳定。 (2)凝结水处理 凝结水占给水组成的90%以上,大机组对凝汽器渗漏造成的轻微污染是不能容忍的,必须进行凝结水除盐处理。国外从70年代起在大容量电厂采用压力为2~3.5MPa的中压深层混床,为提高再生度和符合运行安全要求,基本都为体外式再生,不同的制造公司都有自己的专利技术,主要区别表现在再生方式上,如氯化法、中间抽出法、浓碱法、钙化法、锥体分离法和综合法等。树脂分离技术要求将约占5%~10%的混层树脂xx分离,这是提高水质的主要保证。目前国内发电机组,凝结水采用中压处理方式的还不多,而且多为国外引进的设备。凝结水处理前置过滤装置有多种形式,其中以高梯度磁力过滤器对除去凝结水中以腐蚀产物为主的浊度效果{zh0}。如果在混合树脂上部覆盖一层阳树脂,可以充当前置过滤器,用于截留铁腐蚀产物,对提高出水水质意义显著。球形结构的中压凝结水精处理系统运行可靠性高,不用前置过滤器,使系统结构简单化。另外,高速混床的树脂采用均粒树脂,可使运行流速提高到120m/h,并可以解决分层不容易的问题。 凝结水处理可以考虑在除盐系统中设置一台阳床(H型或NH4型)和一台混床(NH4型),正常运行时凝结水只通过混床,不通过阳床;而当凝汽器严重泄漏、水中硬度较长时间增大或机组启动初期时,才投运混床前的阳床,根据硬度不合格时间的长短来决定是否将NH4型阳床转变成H型。 (3)循环水处理 600MW机组的冷却水量达70000m3/h,补给水近20m3/h。以水管电的局面成为我国高参数机组发展的一个主要制约因素。冷却水的循环回用和水质稳定技术的开发是当前节水节能的必由之路,应努力把循环水的浓缩倍率提高到3.0以上,争取达到5.0,提高重复利用效率。循环水处理技术总的发展原则是:集节水、降成本于一体,有效协调各处理方法、设置配合处理系统。 冷却最普遍使用的方法,设备费用和运行费用都较低,防垢效果好。为避免磷系水处理药剂对环境水体的二次污染,今后应致力于开发和使用低磷或非磷系配方的高效阻垢分散剂,改变品种单一的状况,发展多元共聚物水处理药剂。使用高效水质稳定剂可使浓缩倍率≥2.5,若配合加酸处理使浓缩倍率≥3.0,防垢和节水效果会更好。 国外有些冷却水系统采用反渗透处理,可使排污水量降低90%左右,从节约用水的角度来讲意义较大,实际可行与否还需综合考虑冷却水补给水供应 |