摘要 介绍了浙江省慈溪市天和家园住宅小区43kW.屋顶太阳能并网光伏发电系统的设计思路,以及系统的具体功能与配置,提出了设计中需要注意的问题及具体的解决方案。 TSM一175D型电池组件技术参数如下,峰值功率:Pm=175WP;开路电压: =43.58V;{zj0}工作电压:=36.2V;短路电流:厶=4.97A;{zj0}工作电流:,m=4.85A;重量:G=16kg;尺寸:长×宽×厚=l 581 mm×809mm ×40mm。
3.2.2.2太阳能电池组件的布置 将太阳能光伏发电应用于城市住宅小区时,与建在边远地区、荒漠地区的独立光伏电站有很多不同点,不能简单地将太阳能电池方阵按{zj0}倾角的要求布置,必须要充分考虑与周围环境的协调和美观。根据建设方提供的加号楼屋面图(参见图3)以及现场考察情况,电池方阵布置方案如下: a.西侧平台面积87mz。采用锯齿型方阵。共安装组件36块,方阵倾角为30o。功率为:175Wp×36=6 300W 。 b.斜屋面 一 ,共7块小屋面可安装太阳能组件,总面积(斜面)113.9m:,与斜屋面平行安装组件87块,方阵倾角为斜屋面坡度31。。功率为:175W ×87=15 225Wp。 c.顶层露台上方装饰性花架有厶一 共5个可安装太阳能组件。面积233.44m。,考虑露台的采光和建筑的整体布局和美观。将露台上方装饰性花架前半部分空出一定面积,保持装饰性花架的原貌,后部约有163 m2安装组件,共安装组件126块,为减少风压及屋顶的美观,方阵倾角为7。。功率为:175Wp×126=22 050Wp。该布置方案共安装了1’SM一175D型高效单晶硅太阳能组件249块,总功率为43 575W。,设计按43kWp配置、计算 3.2.3太阳能组件的分组串接 从系统效率考虑,直流电压越高效率就越高,住宅用电电压为220~400V。安装组件时原则上要在同一日{zd1}的组件影响导致整体输出严重下降。该方案屋面布置的太阳能电池组件在安装后的光照有两种情况: a.平台、露台上方装饰性花架安装的组件将不会受到建筑物等的挡光影响; b.斜屋面安装的组件在每天的不同时间段,其光照将会受到不同方向建筑的一定影响。 为了将组件串接后的热斑效应损耗降到{zd1},受到不同方向建筑物影响的组件进行分组。将受到相同方向建筑物影响的组件归为一组。并且在系统中采用多组串逆变器(在后面的逆变器中详述)。为了平衡逆变器的功率,每台多组串逆变器都接入了多组的组件。由多组串逆变器的每路MPPT({zd0}功率跟踪)电路对每路组件进行{zd0}功率点跟踪,从而使因挡光引起的组件功率损失降低到{zd1}限度。电池组件分组数参见图3所示(电池组件被圈的为一组)。 3.3并网逆变器选择与配置方案 3.3.1并网逆变器的选择 并网逆变器是并网光伏系统的重要电力电子设备.其主要功能是把来自太阳能电池方阵输出的直流电转换成与电网电力相同电压和频率的交流电,并把电力输送给与交流系统连接的负载,同时还具有极大限度地发挥太阳能电池方阵性能的功能和异常或故障时的保护功能,即:①尽可能有效地获取因天气变化而变动的太阳能电池方阵输出所需的自动运行和停机功能,以及{zd0}功率跟踪控制功能;②保护电网安全所需的防单独运行功能和自动电压调整功能 ③ 电网或并网逆变器发生异常时,安全脱网或停下逆变器的功能。已进入实用阶段的并网逆变器的回路方式有电网频率变压器绝缘方式、高频变压器绝缘方式和无变压器方式3种。其中无变压器回路方式因在成本、尺寸、质量和效率等方面具有优势而被广泛采用。该系统的并网逆变器选用德国艾思玛公司(SMA)生产的Sunny Mini Central系列SMC6000TL型无变压器集中式逆变器和Sunny Boy系列SB50OOTL Multi—String~无变压器多组串逆变器,具有过压保护、对地故障保护、孤岛效应保护、过载保护、短路故障保护等完善的保护功能,并具有内置逆变采集器和RS485、RS232通信接口,可方便地获取逆变器的运行参数(直流输入电压和电流、交流输出电压和电流、功率、电网频率等)。其技术参数如表1所示。多组串逆变器采用了每路独立的{zd0}功率跟踪,可以处理不同朝向和不同型号的光电组件,也可以弥补不同连接串中的光电组件数量和部分阴影的影响。因而可以有效地避免屋面安装的组件因阴影引起的功率损失。 3.3.2逆变器与电池组件的分组匹配
逆变器与电池组件的分组串接如图4所示。在标准测试条件下逆变器所接入的每路组件数量、输入电压、功率如表2所示。对照表1可知,该方案逆变器与电池组件的配置是合理的,满足要求。3.4太阳能光伏发电系统负载的选择从严格意义上来讲。并网光伏发电系统是将整个城市电网作为自己的储能单元,因而,光伏系统所带负荷是任意的,不存在选择问题。但由于我国《可再生能源法》刚刚于2006年1,q 1日实施, 《可再生能源法》的“上网电价法”和“全网平摊”法规尚未实施,这就带来了住宅小区移交物业管理后电费管理上的困难。因而,为了更好地保证上级城市电网的安全,方便管理,太阳能并网光伏系统负载的选择原则应是使屋顶并网光伏系统的发电功率小于所带负载的用电功率,并且尽可能使负载的用电时间与光伏系统的发电时间相匹配。天和家园设置了高压环网站一座,在小区各负荷点设置了7个箱变.其中2 箱变为800 kV·A,6 箱变l ooO kV.A.其它均为630 kV·A。与光伏系统公共接入点相连的 箱变变压器容量为630kV·A,主要供小区公用负荷用电。天和家园公用负载主要有:地下车库西区照明灯35.2kW,地下车库东区照明灯21.4kW,智能化设备2 kW,以及小区景观灯、围墙灯等。地下车库照明负荷曲线与太阳光日照曲线接近,因此,选择地下车库照明和智能化设备用电为光伏系统的负荷。总负荷功率为58.6kW,大于光伏系统的峰值功率43kW ,且所安装的光伏系统峰值功率43kW。不到所连4#箱变容量的10%,保证了无电能输入上级城市电网,符合设计要求。’ 3.5防雷设计 3.5.1防直击雷措施 直击雷是指直接落到太阳能电池阵列、低压配电线路、电气设备以及在其旁的雷击。防直击雷的基本措施是安装避雷针。由于该光伏系统中的外置设备在整个环境中不是{zg}建筑物,所以设计为:把所有屋顶电池组件的钢结构与屋顶建筑的防雷网相连,以达防雷击的目的,并符合《光伏(PV)发电系统过电压保护一导则》(SJ/T11127)中有关规定。 3.5.2防感应雷措施 太阳能光伏发电系统的雷电浪涌入侵途径,除了太阳能电池阵列外。还有配电线路、接地线以及它们的组合。从接地线侵入是由于近旁的雷击使大地电位上升,相对比电源高,从而产生从接地线向电源侧反向电流引起的。根据sJ/T11127中有关规定。该系统主要采取以下措施: 。 a.在每路直流输入主回路内装设浪涌保护装置,并分散安装在防雷接线箱内。屋顶光伏并网发电系统在组件与逆变器之间加入防雷接线箱,不仅对屋顶太阳能电池组件起到防雷保护作用。还为系统的检测、维修、维护提供了方便。缩小了电池组件故障检修范围。该设计选用了IP65防护等级的TRI—FL型接线箱。并随组件方阵直接安装在室外。其接人方式参见图4。 b.在并网接人控制柜中安装避雷元件,以防护从低压配电线侵入的雷电波及浪涌。并网控制柜原理图参见图5所示。 3.6电缆选择
组件之间的连接电缆和组件与逆变器之间的电缆都使用在户外,直接暴露在阳光下,因此,该光伏系统直流部分选用耐氧化、耐高温、耐紫外线的DCEYHR系列电缆,以保证系统长时间的安全正常运行。 3.7支架设计 慈溪地区为沿海地区。在抗风压以及抗腐蚀方面采取了以下措施: a.所有支架采用国标型钢,多点结合,即:增加钢支架与屋面结构和相关承重结构的连接点,将受力点均匀分布于各承重结构上。按抗l2级台风要求进行力学设计计算.各连接点选用特制型钢和不锈钢螺栓连接。 b.所有支架都采用热镀锌,局部外裸部分喷涂氟碳涂料来有效防腐。 3.8监控系统设计 该监控系统选用德国艾思玛公司(SMA)配套生产的Sunny Boy Contwl Plus产品,具有强大的监控功能: a.监控系统内置可连接外部传感器的输入测量端口和操作界面。包含8个模拟量(如温度、辐照度、气压、湿度等)和8个数字量(如风速、智能电表等)输入接口。 b.通过RS485通信总线与逆变采集器相连接,获取每组光伏组件的发电情况和每台逆变器的发电功率。 e.监控系统可以存储数据,记录250个数据通道,可以显示实时运行状况,分析运行数据。 d.监控系统可以连接外置显示屏昆示户外系统运行情况。也可以与远程监控器相连,实现无线远程连接,远程管理员通过普通手机即可了解到系统的运行情况。 4 结束语 a.该设计方案充分考虑了各种因素和要求,在遵循国家标准 系统并网技术要求》的前提下,充分体现了其科学合理性、经济性、美观性、示范性、人性化等特点.选用的高效率单晶硅电池组件、高效率并网逆变器、多组串逆变器、监控系统(可拓展到远程监控)等也充分反映了这些特点,达到了{zj0}效果,有着较好的示范性和影响力。目前该工程正在申报国家示范性项目。 b.太阳能是一种清洁、可再生能源,太阳能光伏发电实现了直接将太阳能转化为电能。我国人LI众多。人均能源资源量较低,发展可再生能源是落实科学发展观的必然选择。其中太阳能发电是最有前景的技术之一,从环境保护和能源战略上都具有重大意义。 c.将太阳能光伏发电技术应用于城市住宅小区建设项目,国内目前尚无先例。我国新能源法已从2OO6年1月1日正式实施,随着“上网电价法”和“全网平摊”等法规的进~步实施,光伏发电的成本将接近于商业化,这必将极大地推动我国光伏产业的发展.相信不久的将来,我国民用建筑物的屋顶太阳能并网光伏发电系统将会得到广泛的应用[3I 。 原论文pdf版下载: |