引言: 一位航天可靠性老专家过世,一位同学整理老先生的遗物时,发现了一本《 可靠性设计原则 1000 条 》复印本,都是一些比较基础而且比较实用的设计技巧,下面是这 1000 条可靠性设计的具体原则
A1 在确定设备整体方案时,除了考虑技术性、经济性、体积、重量、耗电等外,可靠性是首先要考虑的重要因素。在满足体积、重量及耗电等于数条件下,必须确立以可靠性、技术先进性及经济性为准则的{zj0}构成整体方案。
A2 在方案论证时,一定要进行可靠性论证。
A3 在确定产品技术指标的同时,应根据需要和实现可能确定可靠性指标与维修性指标。
A4 对己投入使用的相同(或相似)的产品,考察其现场可靠性指标,维修性指标及对这两种备标的影响因素,以确定提高当前研制产可靠性的有效措施。
A5 应对可靠性指标和维修性指标进行合理分配,明确分系统(或分机)、不见、以至元器件的的可靠性指标。
A6 根据设备的设计文件,建立可靠性框图和数学模型,进行可靠性预计。随着研制工作深入地进行,预计于分配应反复进行多次,以保持其有效性。
A7 提出整机的元器件限用要求及选用准则,拟订元器件优选手册(或清单)
A8 在满足技术性要求的情况下,尽量简化方案及电路设计和结构设计 ,减少整机元器件数量及机械结构零件。
A9 在确定方案前,应对设备将投入使用的环境进行详细的现场调查 ,并对其进行分析,确定影响设备可靠性最重要的环境及应力,以作为采取防护设计和环境隔离设计的依据。
A10 尽量实施系列化设计。在原有的成熟产品上逐步扩展,抅成系列,在一个型号上不能采用过多的新技术。采用新技术要考虑继承性。
A11 尽量实施统一化设计。凡有可能均应用通用零件,保证全部相同的可移动模块、组件和零件都能互换。
A12 尽量实施集成化设计。在设计中,尽量采用固体组件,使分立元器件减少到最小程度。其优选序列为:大规模集成电路-中规模集成电路-小规模集成电路-分立元器件
A13 尽量不用不成熟的新技术。如必须使用时应对其可行性及可靠性进行充分论证,并进行各种严格试验。
A14 尽量减少元器件规格品种,增加元器件的复用率,使元器件品种规格与数量比减少到最小程度。
A15 在设备设计上,应尽量采用数字电路取代线性电路,因为数字电路具有标准化程度高、稳定性好、漂移小、通用性强及接口参数易匹配等优点。
A16 根据经济性及重量、体积、耗电约束要求,确定设备降额程度,使其降额比尽量减小,便不要因选择过于保守的组件和零件导致体积和重量过于庞大。
A17 在确定方案时,应根据体积、重量、经济性与可靠性及维修性确定设备的冗余设计,尽量采用功能冗余。
A18 设计设备时,必须符合实际要求,无论在电气上或是结构上,提出局部过高的性能要求,必将导致可靠性下降。
A19 不要设计比技术规范要求更高的输出功率或灵敏度的线路,但是也必须在最坏的条件下使用而留有余地。
A20 在设计初始阶段就要考虑小型化和超小型化设计,但以不妨碍设备的可靠性与维修性为原则。
A21 对于电气和结构设计使用公差需考虑设备在寿命期内出现的渐变和磨损,并保证能正常使用。
A22 加大电路使用状态的公差安全系数,以xx临界电路。
A23 如果有容易获得而行之有效的普通工以能够解决问题,就不必要过于追求新工艺。因为{zx1}的不一定是{zh0}的,并且{zx1}的花样没有经过时间的考验;应以费用、体积、重量、研制进度等方面权衡选用,只有为了满足特定的要求时才宜采用。
A24 为了尽量降低对电源的要求和内部温升,应尽量降低电压和电流。这样可把功率损降低到{zd1}限度,避免高功耗电路,但不应牺牲稳定性或技术性能。
A25 应对设备电路进行FMEA及FTA分析,寻找薄弱环节,采取有效的纠正措施。
A26 在设备研制的早期阶段应进行可靠性研制试验。在设计定型后大批投产前应进行可靠性增长试验,以提高设备的固有可靠性和任务可靠性。
A27 对设备和电路应进行潜在通路分析、找出潜在通路、绘图错误及设计问题。避免出现不需要功能和需要受到抑制。
A28 对稳定性要求高的部件、电路,必须通过容差分析进行参数漂移设计,减少电路在元器件允许容差范围内失效。
A29 正确选择电路的工作状态,减少温度和使用环境变化对电子元器件和机械零件特性值稳定性的影响。
A30 注意分析电路在暂态过程中引起的瞬时过载,加强暂态保护电路设计,防止元器件的瞬时过载造成的失效。
A31 主要的信号线、电缆要选用高可靠连接。必要时对继电器、开关、接插件等可采用冗余技术,如采取并联接或将多余接点全部利用等。
A32 在设计时,对关键元器件、机械零件已知的缺点应给予补偿和采取特殊措施。
A33 分机、电路必须进行电磁兼容性设计,解决设备与外界环境的兼容,减少来自外界的天电干扰或其它电气设备的干扰解决产品内部各级电路间的兼容。克服设备内部、各分板及各级之间由于器件安装不合理、连线不正确而产生的辐射干扰和传导干扰。
A34 采用故障--安全装置。尽量避免由于部件故障而引起的不安全状态,或使得一系列其他部件也发生故障甚至引起整个设备发生故障。
A35 在设计时应选用其主要故障模式对电路输出具有最小影响的部件及元器件。
A36 在设计电路及结构设计时和选用元器件时,应尽量降低环境影响的灵敏性,以保证在最坏环境下的可靠性。
A37 选择接触良好的继电器和开关,要考虑截断峰值电流,通过最小电流,以及{zd0}可接受的接触阻抗。
A38 在电路设计中应尽量选用无源器件,将有源器件减少到最小程度。
A39 如果可变电阻器有一端未与线路相接,应将滑臂接上,以防止开路。应确保调至最小电阻时,电阻器和额定功率仍然适用。
A40 使用具有适当额定电流的单个连接插头,避免将电流分布到较低额定电流的插头上。
A41 调整电子管灯丝电流以减低初始浪涌,减小故障率。
A42 避免使用电压调整要求高的电路,在电压变化范围较大的情况下仍能稳定工作。
A43 在关键性观察点应配备两套或更多的并联照明光源。
A44 采用必要措施避免采取某些故障模式导致设备重复失效。
A45 选择最简单、xxx的冷却方法,以xx全部发热量的百分之八十。
A46 考虑经济性、体积及重量等,应{zd0}限度地利用传导、辐射、对流等基本冷却方式,避免外加冷却设施。
A47 冷却方法优选顺序为:自然冷却→强制风冷→液体冷却→蒸发冷却。
A48 采用高效能零件(例如:采用半导体器件而不用电子管)和电路。
A49 尽量保持热环境近似恒定,以减轻因热循环与热冲撞而引起的突然热应力对设备的影响。
A50 必须假定所设计的设备会靠近比环境温度更高的其它设备。
A51 在设计的初期阶段,应预先研究哪些部件可能产生电磁干扰和易受电磁干扰,以便采取措施,确定要使用哪些抗电磁干扰的方法。
A52 设备内测试电路应作为电磁兼容性设计的一部分来考虑;如果事后才加上去就可能破坏原先的电磁兼容性设计。
A53 在设计上要保证设备同其他设备满意地共同工作。
A54 尽量压缩设备工作频率带宽,以抑制干扰的输入。
A55 在设备中,尽量控制脉冲波形前沿上升速度和宽阔,以减少干扰的高频分量,(在满足电气性能的情况下)。
A56 尽量减少电弧放电,为此尽量不用触点闲合器件。
A57 在设备电路中设置各种滤波器以减少各种干扰。
A58 保险丝和线路等过载保护器件应该使于使用({zh0}就在前面板上)。除非为了安全上的需要,应不要求使用特殊工具。
A59 如果要求电路在过载时也要工作,在主要的部件上应安装过载指示器。
A60 在前面板上应安装指示器,以指示保险丝或线路截断器已经将某一电路断开。保险丝板上应标出每一保险丝的额定值,并标出保险丝保护的范围。
A61 对所使用的每一类型保险丝都要有一个备用件,并保证备用件不少于总数的10%。
A62 选择线路截断器,应能人工操纵至断开或接通位置。
A63 使用自动断路截断器,除非使用时要求自动断路机构应急过载(不断路)。
A64 必须记住,xxx的电磁干扰控制技术,应在设计部件和系统的最初阶段加以采用。
A65 对设备中失效率较高及重要的分机、电路及元器件要采取特别降额措施。
A66 集成电路对结温和输出负载进行降额应用。
A67 晶体三极管除结温外,对其集电极电流及任何电压予以降额应用。
A68 晶体二极管除结温外,对其正向电流及峰值反向电压予以降额应用。
A69 电阻器除外加功率进行降额应用外,在应用中要低于极限电压及极限应用温度。
A70 电容器除外加电压进行降额应用外,在应用中要注意频率范围及温度极限。
A71 线圈、扼流圈除工作电源进行降额应用外,对其电压也要进行降额。
A72 变压器除工作电流,电压进行降额应用外,对其温升按绝缘等级作出规定。
A73 继电器的接点电流按接负载地降额应用外,对其温度按绝缘等级作出规定。
A74 接插件除了电流进行降额应用外,对其电压也要进行降额,根据触点间隙大小、直流及交流要求不同而进行适当降额。
A75 对于电缆、导线除了对电流进行降额应用外(铜线每平方毫米截面流过电流不得超过7安培),要注意电缆电压,对于多芯电缆更要注意其电压降额。
A76 电子管应对板耗功率和总栅耗功率进行降额应用。
A77 对于开关器件除对开关功率降额外,对接点电流也要进行进行降额应用。
A78 对于电动机应考虑轴承负载降额和绕阻功率降额。
A79 结构件降额一般指增加负载系数和安全余量,但也不能增加过大,否则造成设备体积、重量、经费的增加。
A80 对电子元器件降额系数应随温度的增加而进一步降低。
A81 对于电子管灯丝电压和继电器的线包电流不能降额,而应保持在额定值左右(100±5%);否则会降低电子管寿命和影响继电器的可靠吸合。
A82 电阻器降低到10%以下对可靠性提高已经没有效果。
A83 对电容器降额应注意,对某些电容器降额水平太大,畅引起低电平失效,交流应用要比直流应用降额幅度要大,随着频率增加降额幅度要随之增加。
A84 对于磁控管降额的使用,如果阳极电流不加到规定值,降低灯丝电压使用,不仅不能提高可靠性,恰恰相反,正是牺牲了可靠性。
A85 为了保证设备的稳定性,电路设计时,要有一定功率裕量,通常应有20-30%的裕量,重要地方可用50-{bfb}的裕量,要求稳定性、可靠性越高的地方,裕量越大。
A86 要仔细设计电路的工作点,避免工作点处于临界状态。
A87 在设计电路时,应对那些随温度变化其参数也初之变化的元器件进行温度补偿,以使电路稳定。
A88 电子元器件往往随环境条件变化而变化,了此,应说设备和电路采取环境控制和隔离。
A89 正确选用那些电参数稳定的元器件,避免设备和电路产生飘逸失效。
A90 进行传动部件强度和刚度裕度设计,要保证在恶劣环境条件下与其他电子部件同时进入“浴盆效应”的磨损期。
A91 对摩擦位置以及机械关节进行密封设计。
A92 选择耐磨损和抗振疲劳的材料。
A93 采取抗磨损性能的特殊工艺。
A94 电子设备的元器件,机械零件存在着贮存失效,在设计上应有减少这种失效措施,同时采取正确存储方法。
A95 电路设计应容许电子元器件和机械零件有{zd0}的公差范围。
A96 电路设计应把需要调整的元器件(如:半可变电容器、电位器、可变电感器及电阻器等)减少到最小程度。
A97 要尽量选用有足够温度要求和温度系数小的电容器。
A98 当电源电压和负荷在通常可能出现极限变化的情况下,电路仍能正常工作。
A99 用任意选择的电子元器件电路仍能正常工作。
A100 电路和设备应能在过载、过热和电压突变的情况下,仍能安全工作。
A101 设计设备和电路时,应尽量放宽对输入及输出信号临界值的要求。
A102 电路应在半导体器件手册上规定的β值范围内正常工作。
A103 努力降低元器件失效影响程度,力求把电路的突然失效降低为性能退化。
A104 使用反馈技术来补偿(或抑制)参数变化所带来的影响,保证电路性能稳定。例如,由阻容网络和集成电路运算放大器组成的各种反馈放大器,可以有效地抑制在因元器件老化等原因性能产生某些变化的情况下,仍然能符合{zd1}限度的性能要求。
A105 对于重要而又易出故障的分机,电路和易失效的元器件在体积、重量、经费、耗电等方面允许的条件下,经可靠性预计和分配后,采用冗余设计技术。
A106 接插件、开关、继电器的触点要增加冗余接点,并联工作。插头座、开关、继电器的多余接点全部利用,多点并接。
A107 每个接线板应有10%的接线柱或接线点作为备用。
A108 当转换开关的可靠性小于单元可靠度50%时,则应采用工作储备。
A109 当体积、重量非关重要,而可靠性及耗电至关重要时则应采取非工作贮备,非工作贮备有利于维修。
A110 贮备设计中功能冗余是非常可取的,当其中冗余部件失效时并不影响主要功能;而同时工作时,又收到降额设计的效果。
A111 对于易失效的元器件应采取工作储备(热储备)。
A112 如果信息传递不允许中断应采取工作储备。
A113 如果对设备的体积、重量等有严格要求,而提高单元的可靠性又有可能满足执行任务要求的话就不必采用储备设计;同时应考虑经济性。
A114 尽管“并串”比“串并”可靠性高,但考虑便于维修,“串并”也是可取的。
A115 对于设备(或系统)中的可靠性薄弱环节进行储备设计而采取混合储备设计措施是很可取的。这是经过可靠性、经济性及重量和体积的权衡结果。
A116 在冷贮备设计中,应尽量采用自动切换转置。
A117 运动状态下的非工作贮备(冷贮备)可以缩短信号中断时间,在贮备设计中可以根据具体情况加以说明。
A118 保证热流通道尽可能短,横截面要尽量大。
A119 在需要传热性能高时,可考虑采用热管。热管散热量可比实之铜导体高数百倍。
A120 利用金属机箱或底盘散热。
A121 力求使所有的接头都能传热,并且紧密地安装在一起以保证{zd0}的金属接触面。必要时,建议加一层导热硅胶 以提高产品质量传热性能。
A122 将需散热一瓦以上的器件安装在金属底盘上,或安装传热通道通至散热器。
A123 器件的方向及安装方式应保证{zd0}对流。
A124 将热敏部件装在热源下面,或将其隔离。
A125 安装零件时,应充分考虑到周围零件辐射出的热,以使每一器件的温度都不超过其{zd0}工作温度雨避免对准热源。
A126 对靠近热源的热敏部件,要加上光滑的涂上漆的热屏蔽。
A127 确保热源具有高辐射系数。如果处于嵌埋状态,须用金属传热器通至冷却装置。
A128 玻璃环氧树脂线路板式不良散热器,不能全靠自然冷却。
A129 如果玻璃环氧树脂印制线路板不能足以散发所产生的热量,则应考虑加设散热网络和金属总印制电路板。
A130 选用导热系数大材料制造热传导零件。例如:银、紫铜、氧化铍陶瓷及铝等。
A131 加大热传导面积和传导零件之间的接触面积。在两种不同温度的物体相互接触时,接触热阻是至关重要的。为此,必须提高接触表面的加工精度、加大接触压力或垫入软的可展性导热材料。
A132 在热传导路径中不应有绝热或隔热元器件。
A133 适当采用物理隔离法或绝热法。
A134 使用通风机进行风冷,俩电子元器件温度保持在安全的工作温度范围内。通风口必须符合电磁干扰、安全性要求,同时应考虑防淋雨要求。
A135 气冷系统需根据散热量进行设计,并应根据下列条件:在封闭的设备内压力降低时应通入的空气量、设备的体积,在热源出保持安全的工作温度,以及冷却功率的{zd1}限度(即使空气在冷却系统内运动所需的能量)。
A136 设计时应注意使风机马达冷却。
A137 用以冷却内部部件的空气须经过滤,否则大量污物将积在敏感的线路上,引起功能下降或腐蚀(在潮湿环境中会更加速进行),污物还能阻碍空气流通和起绝热作用,使部件得不到冷却。
A138 设计时注意使强制通风和自然通风的方向一致。
A139 不要重复使用冷却空气。如果必须使用用过的空气或连续使用时,空气通过各部件的顺序必须仔细安排。要先冷却热敏零件和工作温度低的零件,保证冷却剂有足够的热容量来将全部零件维持在工作温度以内。
A140 设计强制风冷系统应保证在机箱内产生足够的正压强。
A141 设置整套的冷却系统,以免在底盘抽出维修时不能抗高温的器件被高温热致失效。
A142 进入的空气和排出的空气之间的温差不应超过14℃
A143 保证进气与排气间有足够的距离。
A144 非经特别允许,不可将通风孔及排气孔开在机箱顶部或面板上。
A145 尽量减低噪音与振动,包括风机与设备箱间的共振。
A146 使用无刷交流电机驱动的风扇、风机和泵,或者适当屏蔽的直流电动机。
A147 注意勿使可伸缩的单面式组合抽屉阻碍冷却气流。
A148 在计算空气流量时,要考虑因空气通道布线而减少的截面积。
A149 若设备必须在较高的环境温度下或高密度热源下工作,以致自然冷却或强制风冷法均不使用时,可以使用液冷或蒸发冷却法。
A150 如果必须用液冷法,{zh0}用水作冷却剂。
A151 设计时注意使冷却剂能自由膨胀,而机箱则须承受冷却剂的{zd0}蒸汽压力。
A152 注意管道必须合乎要求,设备必须严封,严防气塞。
A153 吸气孔与过滤塞必须装置适当。
A154 注意冷却系统的吸气孔应在较低部位而排气阀应在较高部位。在每一个断开处安装检验阀。
A155 要确保冷却剂不致再{zg}的工作温度以下沸腾(如有必要,应安装温度控制器件),还应确保冷却剂不致在{zd1}温度以下结冰。上述任一情况都会导致管道破裂。
A156 要避免蒸汽在设备内冷凝。
A157 设计冷却系统时,必须考虑到维修。要从整个系统的现点出发来选择热交换器、冷却剂以及管道。冷却剂必须对交换器和管道没有腐蚀作用。
A158 布置未经屏蔽的电子管时,其间隔至少应为直径的1~0.5倍。避免阳极过热。
A159 为避免电子管辐射热影响热敏器件、屏蔽罩的内面的辐射能力要强(涂黑),而外面则应是光滑的,并能将热传导到底盘上。
A160 不要把传热的屏蔽罩安装在塑料底盘上。
A161 当激振频率很低时,应增强结构的刚性,提高设备及元器件的固有频率与激振频率的比值,使隔振系数接应于1,以使设备和元器件的固有频率远离共振区。
A162 尽量提高设备的固有振动频率,电子设备机柜的固有振动频率应为{zg}强迫频率的两倍,电子组件应为机柜的两倍。如舰船和潜水艇的振动频率普遍范围在12~33赫,机柜固有振动频率不低于60赫,组件的固有振动频率不低于120赫。
A163 应将导线编织在一起,并用线夹 分段固定,电子元器件的引线应尽量短以提高固有有频率。
A164 电子器件(直径超过1.3cm或每一引头重量超过7克)应夹定或用其它方法固定在底盘上或板上,以防止由于疲劳或振动而引起的断裂。
A165 焊接到同一端头的绞合铜线必须加以固定,使其在受振动时,使导体在靠近各股铜线焊接在一起处不致发生弯曲。
A166 连结引头处不可没有支撑物。
A167 使用软电线而不宜用硬导线,因后者在挠曲与振动时易折断。
A168 使用具有足够强度的对准销或类似装置以承受底盘和机箱之间的冲击或振动。不要依靠电气连接器和底盘滑板组件来承受这种负荷。
A169 抽斗或活动底盘须至少在前面和后面具有两个引销。配合零件须十分严密以免振动时互相冲击。
A170 在门和抽斗上安装锁定装置,以各冲击或振动时打开。
A171 避免悬臂式安装器件。如采用时,必须经过仔细计算,使其强度能在使用的设备最恶劣的环境条件下满足要求。
A172 沉重的部件应尽量靠近支架,并尽可能安装在较低的位置。如果设备很高,要在顶部安装防摇装置或托架,则应将沉重的部件尽可能地安装在靠近设备的后壁。
A173 设备的机箱不应在50赫以下发生共振。
A174 大型平面薄壁金属零件,应加折皱、弯曲、或支撑架。
A175 模块和印制电路板的自然频率应高于农们的支撑架({zh0}在60赫以上)。可采用小板块或加支撑架以达到这个目的。
A176 所有调谐元件应有固定制动的装置,使调谐元器件在振动和冲击时不会自行移动。
A177 在使用一个继电器的地方可同时使用两个功能相同而频率不同的继电器。
A178 继电器安装应使触点的动作方向同衔铁的吸合方向,尽量不要同振动方向一致, 为了防止纵向和横向振动失效可用两个安装方向相垂直的继电器。
A179 实施振动、冲击隔离设计,对发射系统一些关键电真空器件,要采取特殊减震缓冲措施,要使元器件受震强度低于0.2m/s2(加速度)。
A180 加速力传到机柜内部时,它会逐渐变小,能够经受高加速应力的零部件应要机柜内安装,不能经受高加速应力的零部件应在机柜中心处安装。
A181 不使用钳伤和裂纹导线,在两端具有相对运动的情况下,导线应当放长。
A182 通过金属孔或靠近金属零件的导线必须另外套上金属套管。
A183 对于插接式的元器件(如电子管等)其纵轴方向应与振动方向一致。同时,应加设盖帽或管罩。
A184 对于不同的半导体器件安装方法应不同,对于带插座的晶体管和集成电路应压上护圈,护圈用螺栓接固在底座上。对于有焊接引线的晶体管,可以采取外装、专用弹簧夹、护圈或涂料(如硅橡胶)固定在印刷板上。
A185 对于电阻器和电容器在安装时关键在于避免谐振。为此,一般采用剪短引线来提高其固有频率使之离开干扰频谱。对于小型电阻、电容只有尽可能卧装。在元件与底板间埴充橡皮或用硅橡胶封装。对大的电阻、电容器则需用附加紧固装置。
A186 对于印制电路板,应加固和锁紧,以免在振动时放生接触不良和脱开振坏。
A187 对于陶瓷元件及其他较脆弱的元件和金属件联接时,它们之间{zh0}垫上橡皮、塑胶、纤维及毛毡等衬垫。
A188 为了提高抗振动和冲击的能力,应尽可能的使设备小型化。其优点 是易使设备有较坚固的结构和较调的固有频率,在即定的加速度下,惯性力也小。
A189 对于特别性振动的元器件和部件(如主振动回路元件)可进行单独的被动隔振。对振动源(如电机等)也要单独进行主动隔振。
A190 在结构设计时,除要认真进行动态强度、刚度等计算外,还必须进行必要的模型模拟试验,以确保抗击振动性能。
A191 采用新型高分子轻质材料封装元器件,可以对高冲击振动下易损坏的部件进行防护。
A192 适当的选择和设计减振器,使设备实际承受的机械力低于许可的极限值。在选择和设计减振器时,缓冲和减振两种效果进行权衡。须知,缓冲和减振往往是矛盾的。
A193 对元器件进行灌封是xxx的对其进xx候环境防护的措施。
A194 对于不可更换的或不可修复的元器件组合装置可以采用环氧树脂灌装。
A195 对于含有失效率较高及价格昂贵元器伤势元器件组合装置可以采用可拆卸灌封。如硅橡胶封,硅凝胶灌封和可拆卸的环氧树脂灌封等。
A196 为了防潮,元器件表面可涂覆有机漆。
A197 为了防潮,对元器件可以采取憎水处理及浸渍等化学防护措施。
A198 对设备或组件进行密封是防止潮气及盐雾长期影响的xxx的机械防潮方法。
A199 采用密封措施时,必须注意解决好设备或组合密封后的期热问题。利用导热性好的材料作外壳,或采用特殊导热措施,还必须注意xx可能在设备内部造成腐蚀条件的各种因素。
A200 为了防止盐雾对设备的危害,应严格电镀工艺、保证镀层厚度、选择合适电镀材料(如铅--锡合金)等,这些措施对盐雾雨海水具有十分满意的抵抗能力。
A201 为了防止霉菌对电子设备的危害,应对设备的温度和湿度进行控制,降低温度和湿度保持良好的通风条件,以防止霉菌生长。
A202 将设备严格密封,加入干燥剂,使其内部空气干燥,是防止霉菌的具体措施之一。
A203 使用抗霉菌材料是电子设备防霉的基本方法。无机矿物质材料不易长霉;一般合成树脂本身,具有一定的抗霉性。
A204 对设备使用防霉剂或防霉漆进行防霉处理,即用化学药品抑制霉菌生长,或将其杀死。防霉剂的使用方法有混合法、喷漆法和浸渍法。
A205 选择耐腐蚀金属材料,也可以考虑选用非金属材料代替金属材料。
A206 合理选择材料,降低互相接触金属(或金属层)之间电位差。
A207 当必须把不允许接触的金属材料装配在一起时,可以在两种金属之间涂敷保护层或放置绝缘衬垫;在金属上镀以允许接触的金属层;尽可能扩大阳极性金属的表面积,缩小阴极性金属的表面积。
A208 避免不合理的结构设计。如避免积水结构,xx点焊、铆接、螺纹紧固处缝隙腐蚀;避免引起应力集中的结构形式;零件应力值应小于屈服极限75%。
A209 采取适当的工艺xx内应力和加厚易腐蚀部位的构件尺寸。
A210 采取耐腐蚀覆盖层。金属覆盖层(锌、镉、锡、镍、铜、铬、金、银等镀层);非金覆盖层(油漆等);化学处理层(黑色金属氧化处理--发兰、黑色金属的磷化处理、铝及铝合金的氧化处理,铜及铜合金纯化和氧化处理等)。
A211 为了对气候环紧防护对元器件进行老练筛选是很重要的,对元器件进行密封检漏对防潮和防盐雾有效的措施。
A212 电子设备的机箱上应安装可靠的联接片,使能将设备联接到机架上,机箱内的底盘应与机箱联接。
A213 所有位于高功率辐射装置辐射场内的紧密结合金属部件,如法兰联接、屏蔽罩、检测板、接头都应与底盘相联接。
A214 所有接触面在联接前都应清洁,不得有保护涂层,联接配合面时,应保证对射频电流是低阻抗通路,并降低噪音。
A215 {yj}性直接联接,可以采用热焊、铜焊、锻合、冷焊或拴接。
A216 半{yj}性直接联,可采用螺栓和齿形放松垫圈或夹具。防松垫圈和夹具应用较连接金属电化序低的金属制成或涂敷。
A217 只有在直接连接不可能时才可采用间接或跨线连接。例如:当互相连接的两部分之间必须留有间隙或者安装在防震架上。
A218 联接片与波长相比越短越好,长--宽比维持在5:1或更低。
A219 跨接线应用宽、薄、结实的金属条,而勿用编线(这个规定不适用于强电流非射频跨接线)。
A220 连接线布线设计要注意强弱信号隔离,输入线与输出线隔离。
A221 可以利用控制导线间距的办法减少导线间的耦合,导线间距越大越好。
A222 当强、弱信号电平差40分贝以上时,线路距离应大45厘米。
A223 敏感的线路与中、低电平线路距离应大于5厘米。
A224 电源线应尽量靠近地线平行布线。
A225 尽量缩短各种引线(尤其高频电路),以减少引线电感和感应干扰。
A226 直流电源线应用屏蔽线;交流电源线应用扭绞线。
A227 在可能的情况下,尽量使用硬同轴线将脉冲功率便道到下一级(用以保护由同轴电缆的静电容所产生的波形失真的影响)。
A228 脉冲网络和变压器应进行隔离。变压器的接线与去耦脉冲网络连接,并应做到使这些导线尽量的短。
A229 强干扰信号传输应适用双绞线或专用外屏蔽双绞线。
A230 只要不产生有害的接地环路,所有电缆屏蔽套都应两端接地,对非常长势电缆,则中间也应有接地点。
A231 在灵敏的低电平电路中,以xx接地环路中可能产生的干扰,对每电路都应有各自隔离和屏蔽好接地线。
A232 对于在不同电平上工作的电路,不可用长的公共接地线。
A233 对信号电路 ,要用独自的低阻抗接地回路,避免用底盘或结构架件作回路。
A234 信号电路与电源电路不应有公共的接地线。
A235 接地引线尽量短,尤其对高频电路。
A236 在中短波工作的设备与大地连接时,{zh0}限制在设备发射的?以内;如无法达到上述要求时,接地线也不能为?波长的奇数倍。
A237 对于高灵敏的电子设备,安装时要注意,动力供电和避雷地线不可裸露与墙相贴。以方地线电源的一部分经墙壁流过对电子设备形成干扰。
A238 两种和多种设备连体工作时,为了xx地坏路电源引起的干扰,可采用隔离变压器、中和变压器、光电耦合器和差动放大器共模输入等措施。
A239 强信号与弱信号的地线要单独安排,分别与地网只有一点相连。
A240 尽可能采用短而粗的地线或树枝形地线每一地线回路不能跨接二支,防止互耦。
A241 一般来说,频率在1兆赫以下时,可采用一点接地体系。频率在10兆赫以上时,可采用多点接地体系。当频率在1兆赫至10兆赫之间提,若地线长度不超过波长1/20,则可采用一点接地体系;否则应采用多点接地体系。
A242 一般设备中至少要有三个分开的地线:一条是低电平电路地线(称为信号地线),一各是继电器、电动机和高电平电路地线(称为干扰地线或噪声地线);另一条是设备使用交流电源时,则电源的安全地线应和机壳地线相连,机壳与插箱之间绝缘,但两者在一点相同,{zh1}将所有的地线汇集一点接地。
A243 减小馈线回路的面积,并使得特性阻抗远小于负载阻抗,可以有效的减小瞬态干扰和感生的干扰电压。
A244 对电磁干扰敏感的部件需加屏蔽,使之与能产生电磁干扰的部件或线路相隔离。如果这种线路必须从部件旁经过时,应使用它们成90°交角。
A245 选择金属屏蔽,其机械性能需能支持自身。这样的屏蔽体应有充分的厚度,除甚低频以外,尽可能获得良好的屏蔽。
A246 务必尽可能减少屏蔽体的接缝数。
A247 务必把机械断开处控制到最少,必要时可断开,但必须使接合处保持点的连续性。
A248 为了维持电的连续性,多接点弹簧压顶接触法较其他方法为优。
A249 除引爆装置与雷达调试器外,为了达到良好的屏蔽目的,排潮气孔的直径应小于0.3厘米。这机关事务管理局孔不产生大的电磁干扰。
A250 如有可能,将屏蔽孔改造成波导,使其截止频率高于无关信号。
A251 在屏蔽开口处(例如通风口)可用细铜网或其它适当的导电材料封住。
A252 如果金属网毋须经常取下,可将它沿开口周围焊接起来。屏蔽开口的金属网不可点焊。
A253 如果为了雔或接近的目的金属网必须经常取下,可用足够数目的螺钉或螺栓沿孔口四周严密固定,以保持连续的线接触,螺钉间距不可超过2.5厘米。
A254 确保螺钉或螺栓施加的压力均匀。
A255 确保金属屏蔽网的交叉点联接良好。
A256 使用混合电路时,将许多集成电路合装在一个屏蔽罩内,能降低电磁干扰。
A257 必须选用有接地静电屏蔽的电源与音频输入变压器。
A258 将继电器及其附属线路装在金属屏蔽内,使其顺便干扰最小。
A259 如有必要,对切断强电流的开关,要进行彻底的屏蔽与滤波。
A260 为防止磁场穿过金属地板和屏蔽线外皮构成的回路,通常应将屏蔽线尽量贴在底板上;若周围环境不存在干扰磁场,可以采用多点接地。
A261 振荡器应和其他电路级及天线隔离。
A262 应尽量减少计生振荡和采取必要的预防措施。
A263 对不需要的电信号传输,应采用级间去耦电路、环路或涮调谐回路等方法来加以抑制。
A264 调压电源应设有防止在调节中发生振荡去耦电路。
A265 指示器和交变磁场应进行隔离。指示器、控制器及电源线应使用窒心旁路电容进行专耦。
A266 在使用电子管整流电源时,阳极和阴极引线应使用线路滤波器、静电屏蔽变压器和防振荡扼流图。
A267 在电子管的阳极和栅极电路中,应避免使用长的接线。
A268 电子管的灯丝电源和输出引线应有去耦措施。
A269 在开关和闭合器的开闭过程中,为防止电弧干扰,可以接入简单的RC网络、电感性网络,并在这些电路中加入一高阻、整流器或负载电阻之类,如果还不行,就将输入和载出引线进行屏蔽。此外,还可以在这些电路中接入穿心电容。
A270 一切屏蔽线(套)两端应与地有良好的接触。
A271 用导电良好的金属丝密织编结的导线屏蔽软管,其两端间须保持连续的线接触。
A272 在干扰频率不大于屏蔽体截止频率的5倍时,将一端的负载与屏蔽体连接,并将屏蔽体另一端接地。在感染频率远高于屏蔽体截止频率时屏蔽体两端接地。
A273 设备或屏蔽体应尽量少开洞,开小洞。若必须开洞时可以采取如下减少孔洞泄漏措施:在100千赫到100兆赫频段内加铜网,可采用金属管做通风管,以衰减低于金属管截止频率的电磁干扰。对设备上的装显示元件的大孔,应附加屏蔽法防止泄漏。
A274 当电磁波频率高于1兆赫兹时,使用0.5毫米厚的任何一种金属板制成的屏蔽体,都将场强减弱99%;当频率高于10兆赫时,用0.1毫米的铜皮制成的屏蔽体将场强减弱99%以上;当频率高于100兆赫时,绝缘体表面的镀铜层或镀银层就是良好的屏蔽体。
A275 所有滤波器都须加屏蔽,输入引线与输出引线之间应隔离。
A276 安装滤波器应尽量靠近被滤波的设备,用短的,加屏蔽的引线作耦合媒介。
A277 敷设滤波器引线要靠紧底板,不可把引线弯成环状。
A278 不要因插入滤波器而改变了对信号源的负载阻抗。
A279 只要能达到预定程度的电磁干扰衰减,就可以使用简单的电容器滤波器,而不采用线路复杂的滤波器。
A280 在马达与发电机的电刷上安装电容器傍路,在每个绕组支路上串联R-C滤波器。在电源入口处加低通滤波抑制干扰也很重要。
A281 在开关或继电器触点上安装电阻电容电路。在继电器线圈上跨接半导体整流器或可变电阻。
A282 在直流电源的输出端家大容量的电解电容器和一个小容量的高频电容器以达到去耦作用。
A283 对每个模拟放大器电源,必需在最接近电路的连接处到放大器之间加去耦电容器。
A284 对数字集成电路,要分组加去耦电容器。
A285 雷达调制器内的闸流管应予以屏蔽。
A286 在雷达调制器内的全部电源线都须固定并加屏蔽。
A287 只要可能,将所有的雷达调制脉冲电缆安装在与其它电缆至少相距46厘米处。
A288 主要引线,从变压器直至其离开调制器机箱处,都必须加屏蔽,屏蔽应接地。
A289 采用最可能小的电子管,可将发射机的寄生振荡减至最小限度。缩短栅极引线,加长阳极引线,可使寄生振荡电路失谐。
A290 与栅极引线或阳极引线串联一个小电阻(1至25欧)可以减少寄生振荡。在下一级电子管阳极引线上加一个扼流器也有帮助。
A291 如果可能,不要在栅极和直流阳极电路中同时串入射频扼流圈。如果非要不可,要选择能使栅极谐振射频高于阳极谐振频率的扼流圈。
A292 在接受和发射机箱内,可将一限制电阻器安装在保弧电极的上面,以尽量减少射频范围的振荡效益。
A293 将进入接收机的引线减至最小限度。
A294 在接收机机箱内,补牙安放任何不属于接收机本身的器件,如天线开关继电器等。
A295 用电源线滤波器使从高于电源频率的频率直至1000兆赫的频率范围内产生衰减。
A296 使用天线滤波器以减少天线系统接收基频的杂波辐射或谐波辐射干扰。
A297 调整天线方位,以减少电磁干扰。
A298 如果可能,应用一短而且屏蔽的天线引入线。
A299 只要能做到采用多级射频电路,以使将振荡器与天线隔离,以增加选择性和灵敏度。
A300 在设计接收机时,应将接收有用信号所必需的带宽缩小至{zd1}限度。(注意:如果要用限幅器,应采用较宽的带宽,使限幅器能有效工作。)
A301 至少90%的干扰,是从{dy}级射频级输入电路进入接收机的。
A302 射频及中频线圈、同轴电容器、和内部天线电路都必须加以屏蔽。