1引言
磁性材料() 一直是国民经济、国防工业的重要支柱与基础,广泛地应用于电信、自动控制、通讯、家用电器等领域,在微机、大型计算机中的应用具有重要地位。信息化发展的总趋势是向小、轻、薄以及多功能方向进展,因而要求磁性材料向高性能、新功能方向发展。纳米磁性材料是指材料尺寸限度在纳米级,通常在1~100nm的准零维超细微粉,一维超薄膜或二维超细纤维(丝)或由它们组成的固态或液态磁性材料。当传统固体材料经过科技手段被细化到纳米级时,其表面和量子隧道等效应引发的结构和能态的变化,产生了许多独特的光、电、磁、力学等物理化学特能,有着极高的活性,潜在极大的原能能量,这就是“量变到质变”。纳米磁性材料的特殊磁性能主要有:量子尺寸效应、超顺磁性、宏观量子隧道效应、磁有序颗粒的小尺寸效应、特异的表观磁性等。
关于纳米磁性材料的研究现状
2纳米磁性材料的研究概况
纳米磁性材料根据其结构特征可以分为纳米颗粒型、纳米微晶型和磁微电子结构材料三大类。
2.1纳米颗粒型
磁存储介质材料:近年来随着信息量飞速增加,要求记录介质材料高性能化,特别是记录高密度化。高记录密度的记录介质材料与超微粒有密切的关系。若以超微粒作记录单元,可使记录密度大大提高。纳米磁性微粒由于尺寸小,具有单磁畴结构,矫顽力很高的特性,用它制作磁记录材料可以提高信噪比,改善图像质量。
纳米磁记录介质:如合金磁粉的尺寸在80nm,钡铁氧体磁粉的尺寸在40nm,今后进一步提高密度向“量子磁盘”化发展,利用磁纳米线的存储特性,记录密度达400Gbit/in2,相当于每平方英寸可存储20万部红楼梦小说。
磁性液体:它是由超顺磁性的纳米微粒包覆了表面活性剂,然后弥漫在基液中而构成。利用磁性液体可以被磁场控制的特性,用环状永磁体在旋转轴密封部件产生一环状的磁场分布,从而可将磁性液体约束在磁场之中而形成磁性液体的“O”形环,且没有磨损,可以做到长寿命的动态密封。这也是磁性液体较早、较广泛的应用之一。此外,在电子计算机中为防止尘埃进入硬盘中损坏磁头与磁盘,在转轴处也已普遍采用磁性液体的防尘密封。磁性液体还有其他许多用途,如仪器仪表中的阻尼器、无声快速的磁印刷、磁性液体发电机、医疗中的造影剂等等。
关于纳米磁性材料的研究现状
纳米磁性xx:磁性xx技术在国内外的研究领域在拓宽,如xx癌症,用纳米的金属性磁粉液体注射进人体病变的部位,并用磁体固定在病灶的细胞附近,再用微波辐射金属加热法升到一定的温度,能有效地杀死癌细胞。另外,还可以用磁粉包裹xx,用磁体固定在病灶附近,这样能加强xxxx作用。
电波吸收(隐身)材料:纳米粒子对红外和电磁波有吸收隐身作用。由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大减少波的反射率,使得红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标,起到了隐身作用。
2.2纳米微晶型
纳米微晶稀土永磁材料:稀土钕铁硼磁体的发展突飞猛进,磁体磁性能也在不断提高,目前烧结钕铁硼磁体的磁能积达到50MGOe,接近理论值 64MGOe,并已进入规模生产。为进一步改善磁性能,目前已经用速凝薄片合金的生产工艺,一般的快淬磁粉晶粒尺寸为20-50nm,如作为粘结钕铁硼永磁原材料的快淬磁粉。为克服钕铁硼磁体低的居里温度,易氧化和比铁氧体高的成本价格等缺点,目前正在探索新型的稀土永磁材料,如钐铁氮、钕铁氮等化合物。另一方面,开发研制复合稀土永磁材料,将软磁相与永磁相在纳米尺寸内进行复合,就可获得高饱和磁化强度和高矫顽力的新型永磁材料
纳米微晶稀土软磁材料:在1988年,首先发现在铁基非晶的基体中加入少量的铜和稀土,经适当温度晶化退火后,获得一种性能优异的具有超细晶粒(直径约10nm)软磁合金,后被称为纳米晶软磁合金。纳米晶磁性材料可开发成各种各样的磁性器,应用于电力电子技术领域,用作电流互感器、开关电源变压器、滤波器、漏电保护器、互感器及传感器等,可取得令人满意的竞技效益。
2.3磁微电子结构材料
关于纳米磁性材料的研究现状
巨磁电阻材料:将纳米晶的金属软磁颗粒弥散镶嵌在高电阻非磁性材料中,构成两相组织的纳米颗粒薄膜,这种薄膜{zd0}特点是电阻率高,称为巨磁电阻效应材料,在 100MHz以上的超高频段显示出优良的软磁特性。由于巨磁电阻效应大,可便器件小型化、廉价,可作成各种传感器件,例如,测量位移、角度,数控机床、汽车测速,旋转编码器,微弱磁场探测器(SQUIDS)等
磁性薄膜变压器:个人电脑和手机的小型化,必须采用高频开关电源,并且工作频率越来越高,逐步提高到1~2MHz或更高。要想使高频开关电源进一步向轻薄小方向发展,立体的三维结构铁芯已经不能满足要求,只有向低维的平面结构发展,才能使高度更薄、长度更短、体积更小。对于10~25W小功率开关电源,将采用印刷铁芯和磁性薄膜铁芯。几个微米厚的磁性薄膜,基本上不成形三维立体结构,而是二维平面结构,其物理特性也与原来的立体结构不同,可以获得前所未有的高性能和综合性能。
磁光存储器:当前只读和一次刻录式的光盘已经广泛应用,但是可重复写、擦的光盘还没有产业化生产。{zj1}有发展前途的是磁性材料介质的磁光存储器,其可以像磁盘一样反复多次地重复记录。目前大量使用的软磁盘,由于材料介质和记录磁头的局限性,其存储密度已经达到极限;另外其已经不能满足信息技术的发展要求,无法在一张盘上存储更多的图象和数据。采用磁光盘存储,就能在一张盘上记录数千兆字节到数十千兆字节的容量,并且能反复地擦写使用。
3展望
关于纳米磁性材料的研究现状
纳米技术是本世纪前20年的主导技术,纳米材料是纳米技术的核心,是21世纪最有前途的材料,也是纳米技术的应用基础之一。纳米科技的发展给传统磁性产业带来了跨越式发展的重大机遇和挑战,纳米级磁性材料的开发和研究是磁性材料()发展的一个必然方向,但同时也应重视用纳米技术改造传统产业和对现有材料进行纳米改性方面的研究,以全面提高企业的技术水平和竞争能力,在世界民族之林树立中华民族的大旗。