KMW-306双通道无线话筒的原理及改变用途的方法

KMW-306无线是用于卡拉OK等歌舞厅的高xxx电声器材,其{zd0}的特点是背景噪音极低和优良的抗啸叫功能。笔者曾将2×100W扩音机的主音量和话筒音量均开到{zd0}值,手持话筒距音箱2米处,都不曾发生啸叫。笔者对其接收机进行了分析研究,画出了剖析,如下图所示。由于条件限制,没有对手持话筒进行剖析。

  一、工作原理图中,以A通道为例。发射机输出的109~120MHz FM信号由TX-A接收,经四级LC网络送入IC11的脚。IC11是韩国产的AM/FM单片收音机集成块,这里只用到了FM的高中放部分和鉴频检波电路,并且特将其无台静噪功能舍去,经过检波的音频信号由IC11的脚输出。经笔者对比,发现KA22425D无论从封装上,还是从电路使用上都xx等效于CXA1191M,说明后者xx可以替代前者,为今后的维修提供了方便。

  值得注意的是,该产品在生产时,手持话筒只要没有故障是不做调整的,全部的调整均在接收机上进行。故四级滤波电路和FM的RF、OSC电路均被高频蜡封住,我们一般不能随便动这些元件。由IC11来的音频信号经R105和C124分成两路:一路给IC12D组成的VCVS(压控源)低通;另一路给IC12C组成的VCVS高通。在低通滤波器中,音频信号送入IC12脚端,以射随器的形式输出IC3的脚,受控于脚。采用VCVS低通的特点是:能获得较大的正相增益且元件少,输出低,调整容易和QP<10。经计算,低通的截止为852Hz,读者或许感到奇怪:按说人声的高频至少保证在8kHz,选用这样的截止频率岂不是太低了吗?实际上VCVS的Q值低正好解决了这个问题,过了截止点的幅频特性并不是很陡峭的下降,而是比较缓慢的向下延伸。其余的特点正好便于厂家降低成本和控制产品质量。

  在高通滤波器中,C132拾取由FM检波输出的音频中的背景噪音信号。众所周知,FM波段在无台时会产生较强的“咝……”声,如果不对其进行滤波,这种信号可一直延伸到数百kHz。而VCVS高通就是用于过滤出这种,经计算截止频率大致为124kHz。IC12B对这种信号进行23dB的放大输出并倍压整波,在C131两端形成直流压降。IC12A是电压比较器,对IC12B输出的直流压降进行判断。当手持话筒关闭时,脚输出低电压,使IC3的SW-D关闭:脚输出高,SW-D接通,由IC12D输出的音频信号经R127、×(厂家用焊锡接通)和R134、C140送至CZ输出,再送至推动音箱。

  二、使用效果尽管厂家的说明书中规定音频输出>25mV,但那是话筒放在嘴边时的数值。当改变用途,例如用于会议扩音时,就感到输出太小了,而工作范围是比较理想的。笔者将这套系统放在一个25m长,宽15m宽的礼堂中,手持话筒离开礼堂十余米仍然可以正常工作,只是两路话筒的范围不太一样,B通道要比A通道范围小些,但厂家的参数xx可信。

  三、改变用途针对会议扩音的需要,笔者用了三种方法:1.将手持话筒中的话筒头换成高灵敏度的芯子。2.对IC12D进行处理,即在脚对地接一只,切断脚和脚的连线,在其中串入一只。阻值均为62kΩ,使低通具有6dB的放大量。3.在厂家留有的分立元件射随器的位置上补焊元件,并改造成集电极输出的电压放大器。

  权衡利弊,笔者最终采用了第三种方法。原因是:高灵敏度的话筒芯子不是那么好买,即使买到价格也不便宜;对印板动手术有一定的难度,且调整放大倍数时十分不便。具体的数值见图中虚线“加装电路”。具体做法:焊开“X”处焊锡,连接“Y”处跳线,加装各元件,其中C141和C142焊在铜箔面。

  四、调试用一只100kΩ电位器和51kΩ串联代替“加装电路”中的上偏流电阻,将功放上的“话筒音量”旋钮调至{zd0},主音量放到2/3,高、低音旋钮均调到{zd0},按会场实际连线调试,旋转100kΩ电位器,使其刚刚听到啸叫为止,用一只固定电阻换之即可。

通过上述改造,在实用中取得了较好的效果。

KMW-306双通道无线话筒的原理及改变用途的方法

  • 0

表情: 姓名: 字数
点评:
       
评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款
郑重声明:资讯 【KMW-306双通道无线话筒的原理及改变用途的方法】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——