三相电压源型高频链逆变器组成及原理

三相电压源型高频链逆变器组成及原理

    现代逆变电源主要向如下几个方向发展,如高频功率变换、交流侧单位功率团数、低电磁干扰、体积小重量轻、双向功率流等。单相高频链技术已经得到了广泛的发展和应用,随着应用场合范围的扩大和对功率要求的提高,三相高频链技术也开始被重视并发展,主要是改进控制方法来降低功率损耗。
    三相高频链典型的电路结构如图8所示,由电压源逆变器、高频变压器和周波变换器组成。逆变器输出高频电压,变压器将高频输入和输出进行隔离,周波变换器提供三相脉宽调制电压。逆变器是由4个ICBT和4个反并联二极管以单相桥方式组成,周波变换器是由6个双向开关管以三相桥方式组成。

三相电压源型高频链逆变器电路

    为了获得正弦输出,专家和学者们提出了许多不同的方法,如正弦波脉冲幅度调制、由锯齿波做参考信号、积分环控制、空间矢量调制、差频调制等,同时还提出了混合调制的方法,这种方法是基于载波调制、空间矢量调制(SVM)和数字标量调制(DSM)之间的相关性而提出的。
    周波变换器和三相逆变器的工作原理是相似的,只是三相逆变器的输入是一个直流电压,而周波变换器的输入是一个正负交替变换的方波电压,因此,当周波变换器的输入电压为正时,周波变换器的PWM信号和三相逆变器的PWM信号相同,而当输入电压为负时,周波变换器的PWM信号正好和三相逆变器的PWM信号相反,如图9所示,而且当三相逆变器的PWM信号和逆变器输出电压的极性同步时,周波变换器的开关频率最小。

    为了降低周波变换器的开关损耗,也提出了许多方法和策略,如非谐振ZV5、电源换相(soure commutation)(即ZCS)和电压箝位及其它们的改进方法。
5.1 非谐振ZVS技术
    图10中的虚线是图9中的PWM信号和逆变器输出电压信号,但只有在周波变换器输出的{zd0}宽度电压内才要求逆变器必须输出电压,在半个开关周期内的其他时间逆变器的输出都为O,因此,周波变换器PWM信号的边界可以移到逆变器输出为0的区域,如图10所示,开关器件都是在零电压期间进行开通和关断。
    图11为空间矢量图,它是由6个向量(V1~V6)和两个零向量(V0和V7)构成的,分成6个区间。图12是当周波变换器输入电压为(a)时,传统PWM(b)和非谐振ZVS PWM(c)两种模式在区域V中的波形图。由于上述非谐振ZVS只能在从一个开关周期到另一个开关周期变换时实现软开关,因此义提出了一种新的控制方案,不仅在周期变换时而且在周期内都能实现软开关。表1列出了3种PWM模式的比较。

5.2 电源换相技术
    利用逆变器的输出电压进行换相,短路电流的方向和负载电流的方向相反,如图13所示。如果负载电流为正,导通开关从SUPP到SUNP变化,如果延时SUPP的关断信号,由逆变器输出电压产生的短路电流将会减小SUPP中的电流,当短路电流等于负载电流时,就完成了换相,而没有开关损耗,也因此这种技术又称为ZCS技术。

5.3 电压箝位技术
    在有开关器件的电路中,往往通过增加缓冲电路来防止开关器件出现过电压,但在缓冲电路中会产生大量功率损耗,而图14中虚线部分组成的电压箝位电路就可以解决此问题。电压箝位电路包括一个电容、4个开关管和10个二极管。在周波变换器换相的时候,电容吸收储存在变压器漏感上的能量,这就可以避免开关器件发生电压过冲,而且为了降低功率损耗,储存在电容上的能量还可以通过4个开关管反馈回逆变器端或负载端。在周波变换器死区时间内负载电流可以通过二极管DC5-DC10导通,而且还可以当负载过流时快速切断负载,而不会形成过压导致周波变换器中的开关管击穿。

电压箝位电路



郑重声明:资讯 【三相电压源型高频链逆变器组成及原理】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——