2010年4月4日- Carny的日志- 网易博客

2010年4月4日

2010-04-04 11:51:22 阅读8 评论0 字号:

 

 棱长相等的长方体叫做正方体,又称“”、“”。

  〔1〕有3个面(只从一个角度看),每个面面积相等,形状xx相同。

  〔2〕有4个顶点(只从一个角度看)。

  〔3〕有6条棱,(只从一个角度看)每条棱长度相等。

  因为6的面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6

  设一个正方体的棱长为a,则它的表面积S:

  S=6×a×a或等于6a²

  正确

  正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:

  V=a×a×a或等于a³

  先取上表面的面对角线,计算,得到,根号2倍棱长

  这根面对角线和它相交的棱,就是垂直于上表面的棱,

  又可以组成一个直角三角形,而这个直角三角形的斜边就是体对角线,

  根据勾股定理,得到,体对角线=根号3倍棱长。

  棱长是1厘米的正方体,体积是1立方厘米。

  棱长是1分米的正方体,体积是1立方分米。

  棱长是1米的正方体,体积是1立方米。

  数学题型

  1.掌握长方体和正方体的特征,认识它们之间的关系。

  2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

  3.渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重、难点:

  1.长方体和正方体的特征。

  2.立体图形的识图。

  教学过程:

  一、复习准备:

  1、请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形。老师明确:这些图形都在一个平面上,所有叫做平面图形。

  2、教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。

  教师提问:这些物体是什么图形?

  3、引入:今天这节课我们主要进一步认识长方体和正方体的特征。

  教师板书:长方体和正方体的认识

  二、学习新课:

  (一)长方体的特征。

  1、请同学取出自己准备的长方体。

  教师提问:请用手摸一摸长方体是由什么围成的?

  请用手摸一摸两个面相交处有什么?

  请摸一模三条棱相交处有什么?

  教师板书:面、棱、顶点

  2、参考讨论提纲来研究长方体的特征。

  讨论提纲:

  ①长方体有几个面?面的位置和大小有什么关系?

  ②长方体有多少条棱?棱的位置、长短有什么关系?

  ③长方体有多少个顶点?

  小组讨论,然后完成p28的表格。

  面:6个,长方形(也可能有两个相对的面是正方形),相对的面xx相同。

  棱:12条,相对的4条棱长度相等。

  顶点:8个。

  3、教师:请完整地说一说长方体的特征。

  4、出示长方体框架观察。

  教师提问:框架上的12条棱可以分几组?怎样分?

  相交于一个顶点的三条棱长度相等吗?

  教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  (二)正方体特征。

  1、出示正方体的特征。

  教师提问:看一看这个长方体与原来长方体比较有什么变化?

  (长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。)

  2、对照长方体的特征学生自己研究正方体的特征。

  学生讨论、归纳后,教师板书:正方体

  面:6个xx相同的正方形。

  棱:12条棱长度都相等。

  顶:8个。

  3、学生讨论比较长方体和正方体的特征。

  相同点:面、棱、顶点的数量上都相同;

  不同点:在面的形状、面积、棱的长度方面不相同。

  教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。

  (正方体是特殊的长方体)

  教师板书集合图:

  (三)制作长方体。

  制作准备:

  橡皮泥八小团,细棒十二根(分成三组,每组四根长短相同)

  制作过程:

  1. 按下图的顺序,逐步搭成一个长方体的架子。

  2.成品如图。

  让学生动手操作,然后说一说在制作的过程中有什么发现。

  三、巩固反馈:

  1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?

  2、根据图中数据口答。

  (1) (2)

  (1)长方体的长是( )厘米,宽( )厘米,高( )厘米, 12条棱长的和是( )厘米。

  (2)这幅图中的几何体是( )体,12条棱长的和是( )分米。

  (3)如图一个长方体,它的长、宽、高

  分别是9厘米,3厘米和2.5厘米,它上

  面的面长是( )厘米,宽( )厘米,左

  边的面长( )厘米,宽( )厘米,相交

  于一个顶点的三条棱长和是( )厘米。

  3、判断.正确的在括号里画√,错误的画×。

  (1)长方体的六个面一定是长方形。 ( )

  (2)正方体的六个面面积一定相等。 ( )

  (3)一个长方体(非正方体)最多有四个面面积相等。( )

  (4)相交于一个顶点的三条棱相等的长方体一定是正方体。( )

  四、课堂总结:

  谁来说一说长方体和正方体的特征和它们之间的关系?

  五、课后作业:

  1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?

  2、完成p29的"做一做"。

  1、长、正方体的认识

  {dy}课时:

  教学内容 : 长正方体的认识

  教学目标 :

  1. 认识长方体和正方体的特征 ,理解长方体和正方体之间的关系 。

  2. 认识长方体的长、宽、高和正方体的棱长 。

  3. 培养学生观察和探何能力 , 逐步形成空间观念。

  4. 渗透辩证唯物主义的启蒙教育。

  教学重点:长方体和正方体的特征。

  教学难点:建立长正方体的空间观念。

  教学准备 :实物投影仪 ,学生准备长、正方体实物。

  教学过程 :

  一、初步感知 , 导入新课 。

  1、 引导谈话。

  在日常生活中我们所看到的保健箱、牙膏箱、建筑用的砖块等 ,它们的形状都是长方体。下面请同学们拿出自己带的长方体实物。并说明 :" 像这种形状的物体在日常生活中还有很多。"

  2、谁还能说出生活中的长方体实物?

  3、 出示反例

  教师拿出 一个不是长方体的实物 ( 四棱台 ) , 问学生是不是一个长方体?学生如果答不出来, 教师趁势说明:要判断一个个物体是不是长方体, 要用长方体的特征来进行分析、判断。长方体有哪些特征呢?今天我们这节课就来认识长方体的特征 ( 教师板书课题 "长方体的认识 ")

  二、启发引导 ,探索新知。

  ( 一 ) 认识长方体

  1、巧切萝卡妙引思路。

  引导学生切{dy}刀得到一个面 ,切第二刀得到两个面,一条棱 ,切第三刀得到三个面、三条棱、一个顶点。

  引导谈话 : 下面我们就从面、棱、顶点这三个方面来研究长方体的特征。

  2活动一:

  拿几个长方体的物品来观察,你能发现什么?将小组同学的发现填在下面的表格中。

  通过以上的观察和讨论可以知道:

  长方体是由6个长方形(也可以有两个相对的面是正方形)未成的立体图形。在一个长方体中,相对的面xx相同。相对的棱长度相等。

  3活动二:

  用细木条核橡皮泥,小组同学共同做一个长方体的框架。说一说在制作过程中你有什么发现?

  你能回答下面的问题吗?

  (1)长方体的12条棱可以分成几组?

  (2)相交于同一顶点的三条棱长度相等吗?

  我们把相交于一个顶点的三条棱的

  长度分别叫做长方体的长、宽、高。

  指出下面长方体的长、宽、高各是

  多少厘米?

  4活动三:

  剪下附页1的图样。

  (1) 把图样中xx相同的长方形涂上同样的颜色。

  (2) 用这个图样做一个长方体。

  (3) 量一量所作长方体的长、宽、高各是多少厘米?

  ( 二 ) 认识正方体

  1、拿一个正方体的物品来观察,想一想它有什么特点?

  2、剪下附页2的图样做一个正方体,再量出它的棱长是多少厘米?

  3、揭示长方体和正方体的关系。

  小组讨论:长方体和正方体有哪些相同点,有哪些不同点?

  正方体具备长方体所有的特征,

  是长宽高都相等的长方体,我

  们可以用图来表示它们的关系。

  三、巩固深化 ,培养能力。

  1、 填空。

  (1) 长方体有--个面,6个面都是--(也可能2个相对的面是--), 相对的面的面积--, 长方体有--条棱,每组相对的4条棱的长度都--,长方体有--个顶点。

  (2) 长、宽、高都相等的长方体叫--(也叫--),正方体是--的长方体,6个面都是--,6个面的面积都--,12 条棱的长度都--

  2. 判断。

  (1) 长方体和正方体都有 6 个面、 12 条棱和 8 个顶点。 ( )

  (2)到有6个面、12条棱、8个顶点的物体不是长方体就是正方体。 ( )

  (3) 长方体相对面的面积相等。 ( )

  (4) 正方体是特殊的长方体。 ( )

  (5) 相对的4条棱的长度都相等的物体一定是长方体。 ( )

  3. 如图 , 这是一个纸巾盒

  四、 作业:

  1、量一量数学书的长、宽、高各是多少,然后说一说每个面的长和宽是多少。

  从生活中找一个长方听或正方体包装箱,量一量它的长、宽、高各是多少。

  课后小结:

  第二课时:

  教学内容: 求长正方体棱长和及相应练习

  教学目标:复习长方体和正方体的特征研究棱长和的计算。

  教学重点:

  1、长正方体的特征。

  2、棱长和计算方法。

  教学难点:棱长和计算方法。

  教学用具:模型

  教学过程:

  一、复习检查:

  1、判断:(复习相应的概念)

  (1)、长方体中至少有四条棱的长度相等。 ( )

  (2)、长方体中有时最多有8条棱的长度相待。 ( )

  (3)、 1 2条棱都相待的长方体一定是正方体。 ( )

  (4)、长方体的6个面中至少有4个面是长方形。 ( )

  (5)、相交于一个点的三条棱中任意一条棱都可以看作是长方体的长,其余两条棱的某一条看作宽,另一条可以看作高。 ( )

  (6)、长方体中相对的两个面xx相等。 ( )

  (7)、长方体中有时四个面是xx相等的长方形。( )

  (8)、正方体是长、宽、高都相等的长方体。 ( )

  (9)、长方体是特殊的正方体。 ( )

  (10)、长方体中有时两个相对的面是正方形。 ( )

  二、计算:

  1、小卖部要做一个长2.2米,宽40厘米,高80厘米的玻璃柜台,先要在柜台各边都安上角铁,这个柜台需要多少米角铁?

  独立思考,列式计算,小组交流方法。

  汇报:你是怎样想的?

  长方体12条棱,分成3组,4个长、4个宽、4条高。

  40厘米=0.4米 80厘米=0.8米

  2.2×4+0.4×4+0.8×4还可以(2.2+0.4+0.8)×4

  问:根据是什么?

  2、为迎接五一国际劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。已知工人俱乐部的长90厘米,宽55厘米,高20厘米,工人叔叔至少需要多长的彩灯线?

  问:地面的四边不装,是指哪四条边不装?计算至少需要多长的彩灯线,是求几条边的长度和?

  独立计算

  练一练:

  1一个长方体的长是8厘米,宽是16厘米,高是5厘米。它的棱长和是多少厘米?

  2、一个正方体的棱长和是48厘米,这个正方体的棱长是多少厘米?

  48÷12=4(厘米)

  答:这个正方体的棱长是4厘米。

  三、巩固练习:

  1一个长方体的所有棱长和72厘米,已知长是8厘米,宽是6厘米。高是多少厘米?

  2思考:

  (1)、在下面的硬纸板中,按虚线折叠,哪一个能围成一个表面完整的正方体?为什么?

  (2)、这是长方体的三条棱:(单位:厘米)

  1

  3 2

  ①后面的面积是( )

  ②哪两个面的面积是6平方厘米?

  ③上下两个面的面积和是( )

  ④棱长之和是( )

  4、学雷锋小组为班里做一个节约箱,箱长5分米,宽长4分米,高长3分米。想一想应该怎样做?至少需要多大的纸板?

  三、 作业:探究 练习一

  2、长方体和正方体的表面积

  {dy}课时:

  教学内容:P33-37

  教学目的 :

  1、使学生理解长方体表面积的意义 , 掌握长方体表面积的计算方法, 能够正确地进行计算 , 并能运用所学知识解决一些实际问题 。

  2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。

  3. 培养学生的动手操作能力和共同研究问题的习惯。

  4. 通过亲身参与探索实践活动 , 去获得积极的成功的情感体验。

  5. 体验数学问题的探索性、感受数学思考过程的合理性 , 并从中体验数学活动充满着探索与创造。

  教学重点 : 长方体表面积计算的基本思路和方法。

  教学难点 : 根据长方体的长、宽、高 , 确定每个面的长、宽是多少。

  教具学具 : 多媒体课件、剪刀、长方体盒子、尺、硬纸板、火柴盒。

  教学过程 :

  一、创设情境

  同学们,老师今天给大家带来一件礼物,想把它送给这节课{za}动脑筋,{za}发言的同学,老师觉得这件礼物的盒子不够精美,你们能不能给老师出出主意?(学生说到给礼物盒子包上包装纸,教师说你的想法和我一样。)

  想知道这张包装纸的大小吗?通过今天的学习, 大家就会明白。

  二、自主探索

  分组操作, 探索长方体的表面积的含义、并建立它们的联系。

  同学们, 现在请大家利用桌面上的长方体、剪刀 ,看看把一个长方体或正方体的纸盒展开是什么形状的呢?

  请在展开图中,分别用上下前后左右标明6个面。

  观察长方体展开图,哪些面的面积相等?每个面的长和宽与长方体的长、宽、高有什么关系?

  学生分小组合作操作。

  三、各小组学生交流汇报结果。 ( 学生到实物投影仪上演示并汇报探索思维过程 ) 可能有以下几种 :

  汇报一:

  把长方体纸盒 6 个面剪开 , 并把相对 的面摆放在一起组成三大部分。

  要求出这个长方体的表面积,只要把这三部分面积相加 , {dy}部分面积为 " 长 ×宽× 2", 第二部分面积分为 " 宽×高× 2", 第三部分面积为 " 长×高× 2", 得出 : 长方体的表面积 = 长×宽× 2+ 宽×高× 2+ 长×高× 2 。 学生汇报后 ,演示这一种推导思维的全过程 。

  板书 : 长x 宽× 2+ 宽× 高× 2+ 长×高× 2 。

  汇报二 :

  把长方体纸盒剪成面积相等的两大部分。

  只要把这两大部分的面积相加 , 就可以求出这个长方体的表面积 , {dy}大部分面积为

  " 长×宽 + 长×高 + 宽×高 ", 而第二大部分面积与{dy}大部分面积相等 , 只要把{dy}大部分面积乘 2, 得出长方体的表 面积 =( 长×宽 + 长×高 + 宽×高 ) × 2 。

  师 : 同学们的这种方法真不错 , 请大家看屏幕演示。 (演示这一种方法推导思维的全过程 )板书 :( 长×宽 + 长×高 + 宽×高 ) × 2 。

  汇报三 :

  把长方体纸盒的六个面剪成上下面和四周两大部分。

  只要把这两大部分相加就可以求出这个长方体的表面积 , {dy}大部分面积为 ( 长 × 2+ 宽× 2) ×高 + 长×宽× 2, 并说明 " 长 × 2 +宽× 2" 可以表示这个长方体的底面周长。 师 : 这种方法也很好 , 请同学看演示。 ( 演示这一推导思维的全过程 )

  板书: (长×2+宽×2) 底面周长×高+长×宽×2

  师 : 长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。

  四、实践运用

  1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?

  说明 " 至少 " 的意思。

  独立计算,说说你是怎么计算的?

  2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。

  3、一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的包装纸?

  想一想怎样计算正方体的表面积呢?

  4、选择题。 1. 下图长方体的表面积是

  ① (6 × 3+3 × 15) × 2

  ② (6 × 15+3 × 15) × 2

  ③ (6 × 15+3 × 15+6 × 3) × 2

  单位 : 厘米

  2. 一种长方体硬纸盒 , 底面是边长 2分米的正方形 , 高 4 分米 , 现在要在外面全部涂上油漆 , 油漆面积有多大 ?

  ① (2 × 4+2 × 4+2 × 2) × 2

  ② 2 × 2 × 4+2 × 4 × 2

  ③ 2 × 2 × 2+2 × 4 × 4

  五、拓展创新

  每个小组的桌面上都有两个火柴盒 ,现在要将这两个火柴盒包装起来 , 请大家给它设计一个包装方案,并在小组说一说, 你为什么这样包装?学生通过操作、合作、讨论设计出许多 包装方案, 并说出自己设计包装方案的想 法。有的小组同学把面积{zd0}的两个面重叠起来, 有的认为这样包装纸装用得最少, 而有的则认为有时不单要考虑包装纸的大小 , 也要考虑包装是否美观、大方, 也有的--------

  六、评价体验 今天你运用了什么学习方法 ? 学习上有什么收获 ? 你感受最深是什么 ? 学生之间互相评价。

  七、作业:

  1、看书

  2、实际测量

  长方体是一种很常见的物体, 在我们的周围随时都可以看到长方体, 同学们在教室内找一个长方体并求出它的表面积。学生交流测量和计算的情况。

  课后小结:

  第二课时:

  教学内容:练习六

  教学目标:复习长正方体表面积计算,应用这些知识解决生活问题。

  教学重点:表面积的计算。

  教学难点:表面积知识在实际中的应用。

  教学用具:火柴盒、尺子。

  教学过程:

  一、复习检查:

  1、长正方体的特征是什么?

  2、什么是长正方体的表面积?怎样计算表面积?

  二、基本练习:

  1、正方体的棱长是8分米,这个正方体的棱长之和是( )分米,表面积是( )。

  2、一个长方体长2米,宽4分米,高4厘米,这个长方体棱长之和是( )分米,表面积是( )平方分米。

  3、一个长方体的纸包装箱,长30厘米,宽和高都是20厘米。做10个这样的包装箱,需要纸板多少平方厘米?合多少平方分米?

  你想怎样做这道题?(先计算出一个长方体的表面积,再求出10个的表面积,{zh1}要换算单位。)独立做。

  4、有一个长方体的铁罩,长6分米,宽4.5分米,高4分米。做一个这样的铁罩至少需要多少平方分米?

  铁罩有几个面?计算做一个这样的铁罩至少需要多少平方分米?也就是计算几个面的总面积?

  (计算出五个面的总面积)

  哪五个面?独立计算,小组交流方法。

  方法一:直接计算前后、左右、上面的面积和

  方法二:计算六个面的表面积减去下面

  师:计算长正方体的表面积一般需要计算六个面的总面积,但像这样有时要跟据实际需要计算它的表面积。

  三、解决实际问题:(注意审题和方法的多样性)

  1、一座办公楼的门厅有4跟同样的长方体的水泥柱,长和宽都是4分米,柱高4米。在每根柱子的四壁刷上油漆,刷油漆的面积一共有多少平方分米?(计算出四个面的总面积)

  2、一个长方体的大衣柜,长0.9米,宽0.5米,高1.8米,在它的正面和左右两面刷油漆,刷油漆的面积至少是多少平方米?(三个面的面积)

  3、一个长方体罐头盒,长12厘米,宽8厘米,高6厘米。在它的四周贴上商标纸,这张商标纸的面积至少有多少平方厘米?

  4、一个游泳池,长50米,宽40米,平均深1.5米.在池底和四壁抹上一层水泥, 抹水泥的面积至少是多少平方米?如果每平方米用水泥4.5千克,共需要水泥多少千克?(先求五个面的面积和,再求水泥的重量。)

  5、装修一间居室,长和宽都是3.6米,高是2.5米,门窗面积10平方米。在居室四壁和顶棚都贴壁布,至少需要多少平方米?(居室是什么形状?求几个面的总面积?)

  四、通过今天的练习,你有收获吗?

  五、作业

  3、长方体和正方体体积

  {dy}课时:

  教学目标:

  1、使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。

  2、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。

  教学重点:

  1、建立体积概念。

  2、认识体积单位。

  教学难点:

  建立体积概念。

  教学用具:学具袋。

  教学过程:

  一、导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?

  二、新授:

  1、体积的意义。

  (1)、准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把{dy}个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)

  (2)、每一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?

  〔3〕、启发学生概括:物体所占空间的大小叫做物体的体积。(板书)

  上面三个物体,哪个体积{zd0}?哪个体积最小?

  (4)、比较:用学生手中的文具比。谁的体积大?谁的体积小?

  师:教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一部分。整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自己的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一部分,而地球上的山、川、河流、一切建筑物、人等占地球的一部分。

  2、体积单位:

  (1)、讲:测量长度要用长度单位,测量面积要用面积单位,测量体积要用体积单位。(板书)

  认识体积单位:

  常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成

  ( 2)、认识立方厘米:

  出示:棱长是1厘米的正方体,量一量它的棱长是多少?

  说明:它的体积是1立方厘米。

  谁的体积近似的接近1立方厘米?(色子或一个手指尖的体积大约是1立方厘米)

  (3)、认识立方分米: (方法同立方厘米)

  粉笔盒的体积接近于1立方分米。

  (4)、认识立方米:

  ①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。

  ②认识1立方米的空间大小。

  1立方米水约可以装满500个暖瓶。1立方米的木材约可以做课桌50张。

  小结:

  常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

  体积单位的用途是什么?

  (5)、练一练:选择恰当的单位:

  橡皮的体积用( ),火车的体积用( ),书包的体积用( )。

  (6)、比一比:

  到现在为止,我们都了学哪些测量单位?(板书)

  长度、面积、体积三种单位的区别:

  (7)、练习:

  ①说一说:测量篮球场的大小用( )单位。

  测量学校旗杆的高度用( )单位

  测量一只木箱的体积要用( )单位。

  ②、 一个正方体的棱长是1( ),表面积是( ),体积是( )。(你想怎样填?)

  ③、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。( )

  3、体积初步认识:

  ①决定体积大小,是看它含有体积单位的个数。

  A 、演示:用棱长1厘米的4个正方体,拼一个长方体,说出它的体积是多少?

  B、说出下面物体的体积(3个体积单位,4个体积单位,)

  C 、摆一摆:请你也摆出一个体积是3立方厘米的物体。摆出体积是4立方厘米的物体。

  D、小结:怎样知道一个长方体的体积是多少?

  同一个体积数,可以摆出不同的形状。

  ②动手摆一摆:

  请大家用手中的小正方体拼一个体积是8 立方厘米的长方体(或正方体)。(想一想你拼的物体体积是多少?)可以怎么摆?

  三、总结:

  这节课我们学习了体积的意义和体积单位。你有什么收获?

  四、作业:

  课后小结:

  第二课时:

  教学内容:推导长正方体的体积计算方法

  教学目标:

  1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

  2、培养学生空间和空间想象能力。

  教学重点:长正方体体积公式的推导。

  教学难点:运用公式计算。

  教学用具:1立方厘米学具。

  教学过程:

  一、复习:

  1、什么叫物体的体积?

  2、常用的体积单位有哪些?

  3、什么是1立方厘米、1立方分米、1立方米?

  二、导入新课:

  1、导入:

  我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。

  要知道老师手中的这个长方体和正方体的体积?你有什么办法?(用将它切成1立方厘米(1立方分米)的小正方体后数一数的方法。)

  说明:用拼或切的方法看它有多少个体积单位。但是在实际生活中,有许多物体是切不开或不能切的,如:冰箱, 电视机等,怎样计算它的体积呢?他们的体积会和什么有关系呢?这节课我们就来研究长方体和正方体的体积。(板书课题)

  2、新课:

  (!)、请同学们任意取出几个1立方厘米的正方体在小组里合作摆出一个长方体,边摆边想:你们是怎么摆的?你们摆出的长方体体积是多少?

  (2)、板书学生的:(设想举例)

  体积 每排个数排数 排数 层数

  4 4 1 1

  8 4 2 1

  24 4 3 2

  (3)、观察:每排个数、排数、层数与体积有什么关系?

  板书:体积=每排个数排数排数×层数

  每排个数、排数、层数相当于长方体的什么?

  因为每一个小正方体的棱长是1厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。 

  (4)如何计算长方体的体积? 

  板书:长方体体积=长×宽×高 

  字母公式:V=abc

  三、练习: 

  1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?

  2、导出正方体体积公式: 

  根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

  正方体体积=棱长×棱长×棱长 V=aaa=a3 读作a的立方 

  3、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?

  4、看表计算:

  长 宽 高 体积

  12m 5m 4m

  1.5dm 0.8dm 0.5dm

  8cm 4.5m 3cm

  正方体 棱长 体积

  0.9m

  2.4dm

  1.6cm

  请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米? 

  长方体体积=长×宽×高 提问:长方体的长、宽、高不同,体积相同这是为什么? 

  四、小结:这节课学会了什么? 

  怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。

  四、 作业:

  课后小结:

  第三课时:

  教学内容:

  教学目标:

  1、在理解了长正方体体积公式,能运用公式进行计算的基础上,进一步研究求长正方体体积的其它计算公式。

  2、进一步培养学生空间观念和空间想象能力。

  教学重点:

  1、计算长正方体体积的其它公式。

  2、逆向思维的题可以用方程方法解。

  教学难点:

  几何知识与一般应用题的综合题。

  教学过程:

  一、复习检查:

  如何计算长正方体的体积?及字母公式

  长方体的体积=长×宽×高 正方体体积=棱长×棱长×棱长

  二、新授:

  长方体或正方体底面的面积叫做底面积 。

  长方体和正方体的底面积怎样求呢?

  长方体的体积=长×宽×高 正方体体积=棱长×棱长×棱长

  底面积 底面积

  所以长正方体的体积也可以这样来计算: 长正方体的体积=底面积×高

  V =sh

  三、 巩固练习:

  1、长方体的底面积是24平方厘米,高是5厘米。它的体积是多少?

  V=sh 24×5=120(立方厘米)

  2、一根长方体木料,长5厘米,横截面的面积是0.06平方厘米。这根木料的体积是多少?

  理解横截面积的含义,体会长方体不同放置,说法各不相同。

  出示另一种计算方法:长方体体积=横截面积×长

  3、家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。这根木料一共是多少平方米?

  理解面积单位和长度单位要一致。但不可能相同。

  5、练一练 :用方程法。

  (1)、一块长方体的木板,体积是90立方分米。这块木板的长是60分米,宽是3分米。这块木板的厚度是多少分米?

  (2)、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少? (选择方法解答)

  1、学校要修长50米,宽42米,的长方形操场。先铺10厘米的三合土,再铺5厘米的煤渣。需要三合土和煤渣各多少立方米?

  2、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。

  3、用15根规格xx相同的木板堆成一个体积是3.6立方米的长方体。已知每根木板宽0.3米,厚0.2米,求每根木板的长。

  四、小结:今天,我们又学了哪些知识?你有什么收获?

  五、作业:

  第四课时:

  教学内容:体积单位的进率

  教学目标:在认识体积单位,知道体积单位与长度单位的联系和区别基础上,学习掌握体积单位间的进率与化、聚方法。学习计算重量的解答方法。

  教学重点:体积单位的进率。计算物体的重量。

  教学难点:体积单位的进率的化聚。

  教学过程:

  一、复习检查:

  1、计算体积用 单位,常用的体积单位有哪些?

  2、填空:

  1厘米 1平方厘米 1立方厘米

  单位 单位 单位

  说一说:计算长度用 单位,计算面积用 单位,计算体积用 单位。

  1米=( )分米, 1平方米=( )平方分米

  1分米=( )厘米 1 平方分米=( )平方厘米

  二、新课:

  1、体积单位之间的进率:

  (1)棱长是1分米的正方体,体积是1×1×1=1立方分米。想一想它的体积是多少立方厘米?

  棱长改用厘米作单位:体积是10×10×10=1000立方厘米

  底面积是1平方分米,也就是100平方厘米,利用体积的计算公式100×10=1000平方厘米

  通过刚才的计算你能告诉大家什么?1立方分米=1000立方厘米

  (2)根据上面的方法,你能推算出1平方米等于多少平方分米吗?

  棱长是1分米的正方体,体积是1×1×1=1立方分米

  棱长改用厘米作单位:体积是10×10×10=1000立方厘米

  1立方米=1000立方分米(板书)

  (3)小结: 相邻的体积单位之间的进率是(1000)。

  (4)练习:

  5立方米=( )立方分米

  1.5立方米=( )立方分米

  2400立方分米=( )立方米

  12500立方厘米=( )立方分米

  3.6立方分米=( )立方厘米

  填写比较表

  单位名称 相邻两个单位之间的进率

  长度 米 厘米 分米 =10

  面积 =100

  体积 =1000

  50×30×40= (立方厘米) (立方分米) (立方米)

  3、一块长方体的钢板,长2.5米,长1.6米,厚0.02米。它的体积是多少立方分米?每立方分米的钢重7.8千克。这块钢重多少千克?

  钢板的体积:2.5×1.6×0.02=0.08(立方米) 0.08立方米=80立方分米

  钢板的质量(比重×体积=质量): 7.8×80=624(千克)

  答:这块钢板的体积是80立方分米,质量是624千克。

  求物体的质量公式为:比重×体积=质量 注意前后单位是否统一。

  三、巩固练习:

  1、一块正方体的钢板,棱长是20厘米,每立方分米的钢重8.9千克。这块钢重多少千克?

  20厘米=2分米 2×2×2=8(立方分米)8.9×8=71.2(千克)

  2、一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。每立方分米钢重7.8千克,这根钢材重多少千克?

  3、一块长方体铁板重468千克,又知铁板长2米,宽1.5米,厚2厘米。每立方分米的铁板重多少千克?(列方程解答)

  四、作业:

  第五课时:

  教学内容:容积

  教学目标:

  1、知道容积的意义。

  2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

  3、会计算物体的容积。

  教学重点:

  1、容积的概念。

  2、容积与体积的关系。

  教学难点:

  容积与体积的关系。

  教具:量筒和量杯、不同的饮料瓶 、纸杯

  教学过程:

  一、复习检查:

  说出长正方体体积计算公式。

  二、准备:

  把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

  三、新授:

  1、认识容积及容积单位:

  (1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

  通过上面的"做一做",我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

  (2)计量容积,一般就用体积单位。但是计量液体体积,如xx、汽油等,常用容积单位升和毫升。

  (3)演示:体积单位与容积单位的关系。

  说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

  ①1升(L)=1000毫升(mL)

  将1升 的水倒入1立方分米的容器里。

  小结:1升(L)=1立方分米(dm3 )

  ②1升 = 1立方分米

  1000毫升 1000立方厘米

  1毫升(mL)=1立方厘米( cm3 )

  练一练:

  1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

  1.5dm3 =( )L

  (4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

  (2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

  2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

  例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

  5×4×2 =40(立方分米) 40立方分米=40升

  答:这个油箱可以装汽油40升。

  做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

  小结:计算容积的步骤是什么?

  3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

  出示一个西红柿,谁有办法计算它的体积?小组设计方案:

  四、巩固练习:

  1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

  2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

  3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

  4、提高题:p55、16

  五、作业:

  单元复习

  {dy}课时:

  复习目标:

  1、使学生对长正方体的有关概念掌握得更加牢固。

  2、进一步掌握长正方体的表面积和体积的计算。

  3、体积单位的进率。

  复习重点:

  长正方体的表面积和体积的计算。体积单位的进率。

  复习用具:长正方体的学具。

  复习过程:

  一、复习单元的主要内容:(板书:长方体和正方体)

  问:看到课题你能想到到哪些知识?

  1、特征及关系:

  长方体 正方体

  顶点 8个 8个

  面 6个(相对的两个面相等) 6个面都相等

  棱 12条棱(相对的棱长度相等) 12条棱长度相等

  正方体是特殊的长方体。(集合图)

  2、表面积:怎样求长正方体的表面积?(说出公式)

  3、体积和容积:

  (1)、体积单位:立方米、立方分米、立方厘米。

  (2)、容积单位:一般用体积单位,计量液体时用:升、毫升。

  (3)、体积和容积的计算:(说出公式)

  二、练习:

  1、填空:

  (1)表面积和体积的意义不同,表面积是物体 的大小,体积是物体所占 的大小。

  (2)、表面积和体积所用的计量单位不同,计量表面积用 单位。常用的单位有 、 、 ;相邻的两个面积单位间的进率是 。计量物体体积用 单位,常用的有 、 、 ;相邻的体积单位间的进率是 。

  (3)、表面积和体积的计算方法不同。计算正方体的表面积是 ;计算正方体的体积是 或 。 计算长方体的表面是 ;计算长方体的体积是或 。

  (4)、 一个正方体,棱长是8分米,这个正方体的棱场之和是 ;表面积是 ;体积 。

  (5)、一个长方体,长2米,宽5分米,高0.4分米。这个长方体的表面积是 ;体积是 。

  (6)、一根长方体材料,宽3分米,厚2厘米,体积是0.12立方米。这根木材的长是 ,放在地上占地面积{zd0}是 。

  2、判断:

  (1)、长方体中可以有两个相同的面是正方形。 ( )

  (2)、长方体中相对的4条棱长度相等。 ( )

  (3)、正方体的6个面是xx一样的正方形。 ( )

  (4)、长方体相邻的两个面一定不xx相同。 ( )

  (5)、用同样大小的小正方体拼成一个大正方体,最少要用8个这样的正方体。 ( )

  (6)、长方体中有四个面是xx一样的长方形。 ( )

  (7)、当正方体的棱长是6厘米时,它的表面积和体积就相同。 ( )

  3、选择正确答案:

  (1)、 3.05立方米=( )

  A 305立方分米 B 3050立方分米 C30.5立方分米

  (2)、 4560立方分米=( )

  A、4.56升 B、4560升 C、4.56立方米

  三 、作业:

  第二课时:

  复习目标:通过动手操作,使学生对长方体和正方体的面积和体积等知识得以巩固。培养学生运用所学知识解决实际问题的能力,进一步培养学生的空间观念。

  复习重点:

  通过动手操作,使学生对长方体和正方体的面积和体积等知识得以巩固。

  复习难点:

  运用所学知识解决实际问题的能力,进一步培养学生的空间观念。

  复习用具:火柴盒,尺子,幻灯。

  复习过程:

  一、准备:

  1、揭示课题:

  今天我们上一节长正方体的表面积和体积的练习课。

  2、拿出火柴盒,汇报侧量长宽高的结果。

  外套:长4.5厘米、宽3.5厘米、高1.5厘米

  内盒:长4.3厘米、宽3.4厘米、高1.4厘米

  3、小组活动:

  根据以上条件,想一想可以求什么?(摆放的位置,求哪些面) 只列算式。

  商标面在上、磷面在上、非磷面在上的表面积和体积的求法。如:求磷面的总面积,求外套至少用多少平方厘米,

  求内盒至少用多少平方厘米,求怎样设计内盒最合理(最省料),求火柴盒的容积,求火柴盒的体积等。

  二、研究:(先摆,互相说,列式。)

  1、把火柴盒{zd0}的面相对,拼成一个长方体。求新长方体的表面积。(还可以怎样拼成一个长方体?)

  如果10盒火柴包成一包,怎样码放最省包装纸?( 小组合作摆一摆)

  如果用长45厘米,宽30厘米,高15厘米的硬纸盒装,能装火柴多少盒?(讨论一下怎样求。)

  三、通过刚才的练习你有什么体会?

  四、巩固练习:

  1、学校要靠墙修一个长4.5米,宽3.5米,高1.5米的长方体领操台,要在领操台的表面(四个面)抹一层水泥,求抹水泥的面积是多少平方米?

  2、学校有一个长43分米,宽34分米,深5分米的沙坑,沙坑内沙面离坑口1分米。求沙坑内沙子的体积是多少立方分米?若每立方分米沙子重1.4千克,长满这个沙坑需要沙子多少千克?

  3、一列火车有容积相同的车厢20节,每节车厢从里面量长13米,宽2.5米,装煤的高度是1.2米。这列火车每次运煤多少立方米?(独立完成:先求体积,再求20个这样的体积。)13×2.5×1.2×20=78(立方米)

  补充问题:

  (1)、每立方米煤重1.4吨,这列火车共运煤多少吨?(质量=比重×体积)

  1.4×78=109.2(吨)

  (2)、这批煤由甲乙两个运输队全部运走,甲队运的吨数是乙队运的2.5倍。两队各运多少吨?

  分析:,甲队运的吨数是乙队运的2.5倍。

  想: 甲乙运的和是3.5倍的数,109.2吨就是甲乙的和。

  乙: 109.2÷(2.5+1)=3.12(吨)

  甲: 3.12×2.5=7.8(吨)

  4、一个正方体水箱的容积是125立方分米,把这一满水箱水全部注入到一长方体水箱内。已知长方体水箱长10分米,宽5分米,这个水箱内的水深多少分米?

  你想怎样解答?独立完成,汇报。

  方法一:解:设这水箱内的水深是X分米。

  10×5X=125

  50X=125

  X=125÷50

  X=2.5

  5、一个正方形的铁板(如图),从四个顶点个边长2分米的正方形后,所剩下部分正好焊接成一个正方体铁皮盒。(铁皮厚度忽略不计。)

  (1)这个铁皮的容积是多少立方分米?

  (2)这个铁皮盒用铁皮多少平方分米?

  (3)原来铁皮的面积是多少?

  6、有一个长方体玻璃缸,长3分米,宽2分米。放入一块不规则的石头后水深1.5分米,捞出这块石头后,水面下降了0.5分米。这块石头的体积是多少?

 

<#--{zx1}日志--> <#--推荐日志--> <#--引用记录--> <#--相关日志--> <#--推荐日志--> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构-->
郑重声明:资讯 【2010年4月4日- Carny的日志- 网易博客】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——