化镍金工艺控制- xxppxpxp的日志- 网易博客

化镍金工艺控制

2008-02-13 12:26:16 阅读137 评论0 字号:

 

化镍金工艺控制

一、除油槽

一般情况,沉镍金采用酸性除油剂来处理制板,其作用在于去除铜面之轻度油脂及氧化物,达到铜面清洁及增加润湿的效果,它应当具备不伤材料,低泡型易水洗的特点,后以二级市水洗或三级水洗更佳。

二、微蚀槽

目的在于清洁铜面氧化及前工序遗留残渣,保持铜面新鲜及增加化学镍层的密着性,常用微蚀液为酸性SPS溶液。沉镍金生产也有使用双氧水或酸性过硫酸钾微蚀液。由于铜离子对微蚀速率影响较大,通常须将铜离子的浓度控制在5-25G/L,以保证微蚀速率处于0。5-1。5UM,生产过程中,换槽时往往保留1/5-1/3槽旧液,以保持一事实上的铜离子浓度,也有使用少量氯离子加强微蚀效果。另外,由于带出的微蚀残液,会导致铜面在水洗过程中迅速氧化,所以微蚀后水持和流量以及浸泡时间都须特别考虑,否则,预浸槽会产生太多的铜离子,继而影响钯槽寿命,在条件允许的情况下,微蚀水洗后,再加入5%左右的硫酸浸洗后进入预浸槽。

三、 预浸槽

预浸槽在制程中没有特别的作用,只是维持活化槽的酸度以及使铜面在新鲜状态(无氧化)下,进入活化槽。理想的预浸槽除了钯之外,其它浓度与活化槽一致,实际上,一般硫酸钯活化系列采用硫酸作预浸剂,盐酸钯活化系列采用盐酸作预浸剂,也有使用氨盐作预浸剂(PH值另外调节),否则,活化制程失去保护会造成钯离子活化液局部水解沉淀。

四、 活化槽

活化的作用是在铜面析出一层钯,作为化学镍起始反应之催化晶核,其形成过程则为钯与铜的化学置换反应。

从置换的反应来看,钯与铜的反应速度会越来越慢,当钯将铜xx覆盖后(不考虑浸镀的疏孔性),置换反应会停止,但实际生产中,不可能也不必要将铜面彻底活化,(将铜面xx覆盖),从成本上讲,这会使钯的消耗大幅上升,更重要的是,这样容易造成渗镀等严重品质问题。

由于钯的本身特性,活化槽存在着不稳定这一因素,槽液中会产生细微的钯颗粒,这些颗粒不但会沉积在板的PAD 上,而且沉积在基材、板面及槽壁上,当其累计到一定程度,就可能造成板渗镀及槽壁发黑等现象。

影响钯槽稳定性的主要因素除了xx系列不同之外,钯槽控制温度和钯离子浓度则是首要考虑的问题。温度越低,钯离子浓度越低,越有利于钯槽的控制,但不能太低,否则会影响活化效果,引起漏镀发生,温度在20-30度,钯离子在20-40PPM。在正常情况下,活化常出的钯离子残液体,在二级水洗过程中可以被洗干净,吸附在基材上的微量元素,在镍槽中不足以导致渗镀的出现,另一方面,如果说不正常因素导致基材吸附大量活化残液,并不是硫酸或盐酸能将其洗去,只能从根本上去调整钯槽或镍槽,增加后浸及水洗,其作用是避免水中钯含量太多而影响镍槽。

需要留意的是,水洗槽中少量的钯带入镍槽,不会对镍槽造成太大的影响,所以不必太在意活化后水洗时间太短。一般情况下,二级水洗的时间控制在1-3分钟为佳,最重要的是活化后水洗不可使用超声波装置,否则,不但导致大面积漏镀,而且渗镀问题依然存在。

五、 沉镍槽

化学沉镍是通过钯的催化作用下,NAH2PO2水解生成原子态H,同时H原子在钯催化条件下,将镍离子还原为单质镍而沉积在裸铜面上。

作为沉镍,其本身也具备催化能力,由于其催化能力劣于钯晶体,所以反应初期主要是钯的催化作用在进行,当镍的沉积将钯晶体xx覆盖时,如果镍槽活性不足,化学沉积就会停止,于是漏镀问题就产生了,这种漏镀与镍缸活性严重不足所产生的漏镀不同,前者因已沉积大约20微英寸的薄镍,因而漏镀位在沉金后呈现白色粗糙金面,而后者根本无化学镍的沉积,外观至发黑的铜色。

从化学镍沉积的反应看出,在金属沉积的同时,伴随着单质磷的析出,而且随着PH值的升高,镍的沉积速度加快的同时,磷的析出速度减慢,结果则是镍磷合金的P含量降低。反之。随着PH值的降低,镍磷合金的P含量升高。沉镍中,磷的含量一般在7-11%之间变化,镍磷合金的抗蚀性能优于电镀镍,其硬度也比电镀镍高。

在化沉镍的酸性镀液中,当PH小于3时,化学镍沉积的反应就会停止,而当PH大于6时,镀液很容易产生NI(OH)2沉淀,所以,一般情况下,PH值控制在4.5-5.2之间,由于镍沉积过程产生氢离子(每个镍原子沉积的同时释放4个氢离子),所以生产过程中PH的变化是很快的,必须不断添加碱性药液来维持PH值的平衡。

通常情况下,氨水和氢氧化钠都可以用于生产维持PH值的控制,两者在自动补xx面差别不大,但在手动补药时就应特别注意,加入氨水时,可以观察到蓝色镍氨络离子出现,随即扩散时蓝色消失,说明氨水对化学镍是良好的PH调整剂,在加入NAOH时,槽液立即出现白色氢氧化镍沉淀粉未析出,随着xx扩散,白色粉未在槽液的酸性环境下缓慢溶解,所以,当使用氢氧化钠作为化学镍的PH调整剂时,其配制浓度不能太高,加药时应缓慢加入,否则会产生絮状粉未,当溶解过程未彻底完成前,絮状粉未就会出现镍的沉积,必须将槽液过滤干净后,才可重新生产。

在化学镍沉积的同时,会产生亚磷酸盐的副产物,随着生产的进行,亚磷酸盐浓度会越来越高,于是反应速度受生成物浓度的长高而抑制,所以镍槽寿命未期与初期的沉积速度相差1/3则为正常现象,但此先天不足采用调整反应物浓度方式予以弥补,开缸初期镍离子浓度控制在4.6g/l,随着MTO的增加镍离子浓度控制值随之提高,直至5.0G/L停止,以维持析出速度及磷含量的稳定,以确保镀层品质。

影响镍槽活性最重要的因素是稳定剂的含量,常用的稳定剂是PB(CH3COO)2或硫脲。也有两种同时使用的,稳定剂的作用是控制化学沉镍的选择性,适量的稳定剂可以使活化后的铜面发生良好的镍沉积,而基材或绿油部分则不产生化学沉积,当稳定剂含量偏低时,化学沉镍的选择性变差,产品表面稍有活性的部分都发生镍沉积,于是渗漏问题就发生了,稳定剂含量偏高时,化学沉积的选择性太强,产品漏铜面只有活化效果很好的铜位才发生镍沉积,于是部分PAD位出现漏镀的现象。

镀覆产品的装载量(以裸铜面积计)应适中,以0.2-0.5平方厘米/L为宜,负载太大会导致镍槽活性慢慢升高,甚至导致反应失控,负载太低会导致镍槽活性慢慢降低,造成漏镀问题,在批量生产过程中,负载尽可能保持一致,避免空槽或负载波动太大的现象,否则,控制镍槽活性的各参数范围就会变得很窄,很容易发生品质问题。

镍层的厚度与镀镍时间呈线性关系,一般情况下,200微英寸镍层厚度需镀镍时间28分钟,150微英寸镍层厚度需镀镍时间21分钟左右,由于不同制板所须的活性不同,可考虑采用不同活化时间。

六、 沉金槽

置换反应形式的浸金薄层,通常30分钟可达到极限厚度,由于镀液金的含量很低,一般为0.8-2G/L,溶液的扩散速度影响到大面积PAD位与小面积PAD沉积厚度的关异,一般来说,独立位小PAD位要比大面积PAD位金厚高{bfb}也属于正常现象。金槽容积越大越好,不但金浓度变化小而有利于金厚控制,而且可以延长换槽周期。

多层PCB金属化孔镀层缺陷成因分析及对策(三)

多层印制板金属化孔镀层缺陷成因分析及相应对策(三)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  2.3电镀工序

 

  2.3.1电镀前的板材处理??化学粗化  为了保证化学镀铜层与基体铜箔的结合力,在化学镀铜(沉铜)前,必须对铜箔表面进行一次微粗化(微蚀)处理,处理方法一般采用化学浸蚀,即:通过化学粗化液的微蚀作用,使铜箔表面呈现凹凸不平的微观粗糙面,并产生较高的表面活化能。  印制板镀铜工艺中常用的微蚀液有:过硫酸铵(NH4)2S2O8、双氧水H2O2及过硫酸钠(Na2)2S2O8三种体系。前者溶液不稳定、易分解,因而微蚀速率不易恒定;H2O2?H2SO4体系虽使用方便,甚至可以自动添加来调整浓度,但需用H2O2稳定剂及润浸剂,价格不低,且微蚀速率较低,一般为0.5(0.6μm/Min;而(Na2)2S2O8?H2SO4蚀刻液,微蚀铜速率较大,且较稳定,可以提供较合适的微观粗糙面,从而保证化学镀铜层热冲击不断裂。  要使孔壁铜镀层288℃热冲击10秒不断裂或不产生裂纹,微蚀液蚀刻铜速率必须达到0.7(0.9μm/Min,(Na2)2S2O8?H2SO4体系可以实现此目的。

 

  工艺配方:  (Na2)2S2O8:60(80g/l,{zj0}70g/l。  H2SO4:15ml/L。  Cu2 :1(20g/l。  工作温度:30(50℃。  处理时间:2分。  1)每天生产前,对(Na2)2S2O8浓度进行分析,必要时调整。  2)每天生产前,测一次蚀刻速率,用18μm铜箔试片浸在蚀刻液工作槽中,记下铜箔腐蚀完时间,从而可以快速、简便地测定蚀刻速率,必要时补加(Na2)2S2O8。  3)溶铜量大于20g/l时,更换溶液。刚开缸时,蚀刻速率较小,可以适当增加(Na2)2S2O8浓度。

 

  2.3.2优化电镀工艺参数  对高密细线条、高层次(14(20层)、大板后孔径比(6(10:1)的小孔镀来说,{zd0}的难点是:镀液在孔中难交换及电镀的均匀性、分散性能差。为此,必须优化电镀工艺参数。

 

  1)选用低Cu2 、高H2SO4浓度的主盐成份,且H2SO4与Cu2 浓度比至少是10:1。  Cu2 :10(13g/l。  H2SO4:190(220g/l。  Cl-:30(50ppm。  [H2SO4]:[Cu2 ]=17(20:l  温度:22(26℃。

 

  2)选用低的阴极电流密度和长电镀时间。

 

  3)在保证镀铜液三种搅拌方式阴极移动、压缩空气搅拌、循环)的基础上,在运行杆上安装振动装置。  有了振动装置,阴极不仅有前后摆动,而且有上下振动,这就必然促进电镀液在小孔中的交换,从而提高镀液的分散性能,即使孔口与孔中心的镀层厚度差变小。  采用上述三点措施,大大提高了小孔镀层的均匀性和提高了深镀能力,避免了孔壁镀层薄甚至镀层空洞的产生,从而提高了小孔的孔金属化质

铜的表面加工,通常是指微蚀刻,是印制线路(pwb)板加工过程中几步中的一部分。在镀覆孔(pth)、内层/多层粘合和光致抗蚀层、阻焊层涂覆加工的前处理中,有效的微蚀刻是特别重要的。恰当的微蚀刻不但可以使用效果良好,而且能够延长板的使用寿命。。国内外,不少的研究人员都在研究微蚀体系。而目前常见的微蚀体系有,过硫酸铵/硫酸、过硫酸钠/硫酸、过硫酸钾/硫酸和双氧水/硫酸体系。上述的几种微蚀体系在国内是非常常见的,但是它们都存在稳定性差、蚀刻速率不稳定以及蚀刻效果并不理想的缺点。随着多层线路板的层数增多、线路变得复杂以及线路的维数变多,微蚀刻变得非常关键,而开发和使用些新的微蚀体系,是现在大多数行业人士的愿望。高级微蚀刻化学物质应具有以下的优点:

●均一、可控的蚀刻速率

●被处理的表面更一致,更可控;

●药液更稳定,更持久;

●大的溶解度、溶解速度快;

●体系易被清洗;

●药液易于分析和控制

幸运的是,以杜邦公司oxone®为主要成份的新一代的微蚀体系已经崭露头角了。相信国内的厂家对这种微蚀体系都不大熟悉。这里,笔者就向大家简要介绍下这种新的xx的微蚀体系。

oxone® 单过硫酸化合物的物理性质和化学性质概述

oxone®单过硫酸化合物是一种具有高氧化势能的过氧化物。它通常是白色的、颗粒状易流动的粉末、常作为活性组分加入到很多的高质量的微蚀刻剂配方中。它可以当场或预先配制好规定浓度的蚀刻剂,

oxone®的活性组分是过硫酸氢钾(khso5),它是单过硫酸的酸性盐(也称作caro盐)。它作为三合盐的一个组成部分以分子式2khso5 ?khso4-k2so4 的形式存在。在酸性条件下单过硫酸盐的氧化势能(e)是+1.44v。由于oxone®的特殊化学性,它为铜表面提供了一种选择性的、高效的、可控的氧化剂。槽液中铜(cu2+)的浓度对单过硫酸化学物质没有催化作用。因此,蚀刻作用对微蚀刻剂寿命没有直接的影响。

oxone®单过硫酸化合物的使用在印刷线路板加工中的优势

oxone®单过硫酸化合物作为微蚀刻剂组分,其特别好的质量,可以从其达到上述要求的特性和与普通替用物质(过硫酸钾(钠)、双氧水/硫酸)相比较。

均一、可控的蚀刻速率

单过硫酸化合物的活性氧(ao)含量比起过而硫酸化合物,从热力学角度来说,单位重量的的单过硫酸化合物比过硫酸化合物为铜提供了更多的活性氧。这一点可以从图一看出。在槽中铜离子浓度增大的情况下,比起过硫酸钠(sps),单过硫酸盐的蚀刻速率更加稳定。这主要是由以下原因决定的:cu2+ 不能够催化单过硫酸盐的氧化反应速率,但可以显著催化过硫酸盐和双氧水的氧化反应速率。过硫酸化合物和过氧化物的氧化反应比起单过硫酸化合物更加复杂,前者通常是通过难以控制的自由基反应进行的。

被处理的表面更一致,更可控

使用oxone®单过硫酸化合物进行微蚀刻,可以获得,更好的、选择性的具有清晰的蚀刻界面的x射线照片和均匀的表面(如显微镜照片所示)。过硫酸化合物的微蚀刻作用就不够统一和连续,而双氧水的微蚀刻作用就过于强烈,使得界面过于粗糙。

药液更稳定,更持久

作为固体,oxone®单过硫酸化合物是相对稳定的过氧化物。在推荐的条件下储存,活性每月损失少于1%。同样的,作为典型的微蚀刻液组分(包括1-5%的硫酸)的一部分,溶液中的单过硫酸化合物在长期范围内相当稳定。这一点可以从图2看出。图中,在非铜离子溶液中oxone®的稳定性与过硫酸钠作了对比。其中作对比的条件是相同的:过氧化物浓度120g/l,温度20和35℃[68和95°f],硫酸1.5vol%。实际操作中的区别更加明显,因为,铜离子不能够催化单过硫酸化合物的分解。单过硫酸化合物的稳定性使加工过程变得准确和容易控制,提高了板的完整性和效益。

高溶解度,溶解速度快

oxone®单过硫酸化合物极易、迅速溶于水中,正如表1所示。20℃时,oxone®在水中的溶解度大于250g/l。

容易被冲洗

由于高的溶解度和残余物,单过硫酸化合物比起过硫酸化合物清洗更加容易方便。特别是过硫酸钾,它通常在使用后都需要用硫酸再次清洗,以保证表面的干净性,没有残余的过硫酸钾。而单过硫酸化合物使用后,只需要用水清洗。

药液易于分析和控制

对槽液组分的测量和控制对保持加工的连续性和重复性是非常重要的。除了在槽中条件下比过硫酸盐稳定,oxone®单过硫酸盐能够利用简单的分析程序??测量ao??来对液体进行监测。因为蚀刻速率不是由铜的量决定的,它只可以通过监测ao浓度来进行控制(见下文的测试方法)。对于过硫酸盐,因为蚀刻速率随着液体的用量不同而不同,所以ao和铜离子的浓度必须xx地监测到要求的蚀刻速率。除此之外,过硫酸化合物的xx测量分析方法更加复杂。

测试方法

活性氧/活性组分

1.用1000ml的烧瓶加入100ml的去离子水,溶解100g的碘化钾和20g的edta,制备碘化钾/edta溶液。再加入1滴的浓氨水到溶液中,之后用去离子水加满到1000ml。摇匀,保存在塑料瓶中。

2.准确称量2g槽液溶液加入到配有磁力搅拌器的的250ml的倾口烧杯中,加入100ml 去离子水和20ml先前配置好的碘化钾/edta溶液,充分搅拌,溶液会变成铁锈半的颜色(去离子水和所有试剂应该<20℃[68°f]

3.立即用0.1n的硫代硫酸钠溶液滴定测试标样至呈现淡黄色。加入(2-5ml)的足够的淀粉指示剂溶液,溶液将变成深兰色。立即继续用滴定法测试,直至出现一个可以至少30秒的无色端点。

4.再次重复上述步骤,记录下硫代硫酸钠的体积(ml)。

计算方法:

mlthio×nthio×0.008×100

%活性氧=

标样重量(克)

%活性氧

%活性成分(khso5)= 0.1053

微蚀刻液使用条件

oxone®单过硫酸化合物在微蚀刻中的使用条件根据所进行的特定的操作不同而相异。oxone®通常加入到高级的微蚀刻配方中,使用条件是由配方的制造者决定的。但是,一般来说,下面的条件范围是较常用的:

49.9-149.6g oxone®/l

1-5%(体积)硫酸

温度:32-43℃(90-110°f)

根据准确的使用条件,可以维持到1.3-6.5μm/min的蚀刻速度.

结束语

随着pcb向多层和hdi方向发展, 对pcb化学微蚀剂的要求越来越高,而象过硫酸盐/硫酸、双氧水/硫酸体系的微蚀剂的不稳定性和使用不方便,将会不能够满足要求。而以oxone®为主要成份的微蚀体系,就日益显示其优势。在这里,我们再次总结新一代微蚀体系的优点:

▲均一、可控的蚀刻速率,使用方便;

▲被处理的表面更均一,而且可以根据需要调控所需要的效果;

▲溶解度大,溶解速度快,溶解方便;

▲蚀刻后体系容易清洗,残余极少;

▲化学性质稳定、储藏容易;

▲药液更加持久、稳定,易于分析;

▲药液组成简单,不含螯合剂,废液处理简单;

▲使用于过硫酸盐体系相似,无须更换设备。

以上这些优点是以往旧的微蚀体系不能够比?的,用于pcb的生产制作中,能够提高pcb的质量,提高生产效率。在这里,笔者只是向大家宣传这样一个信息,而且,在国外的某些pcbxx生产商已经将这个体系推出市面。而中国大陆的pcb行业正在迅猛的发展,若是国内生产pcb、fpc以及hdi等厂家能够采用这种新一代的微蚀体系,相信更能够增加我国pcb在国际上的竞争地位铜的表面加工,通常是指微蚀刻,是印制线路(pwb)板加工过程中几步中的一部分。在镀覆孔(pth)、内层/多层粘合和光致抗蚀层、阻焊层涂覆加工的前处理中,有效的微蚀刻是特别重要的。恰当的微蚀刻不但可以使用效果良好,而且能够延长板的使用寿命。。国内外,不少的研究人员都在研究微蚀体系。而目前常见的微蚀体系有,过硫酸铵/硫酸、过硫酸钠/硫酸、过硫酸钾/硫酸和双氧水/硫酸体系。上述的几种微蚀体系在国内是非常常见的,但是它们都存在稳定性差、蚀刻速率不稳定以及蚀刻效果并不理想的缺点。随着多层线路板的层数增多、线路变得复杂以及线路的维数变多,微蚀刻变得非常关键,而开发和使用些新的微蚀体系,是现在大多数行业人士的愿望。高级微蚀刻化学物质应具有以下的优点:

●均一、可控的蚀刻速率

●被处理的表面更一致,更可控;

●药液更稳定,更持久;

●大的溶解度、溶解速度快;

●体系易被清洗;

●药液易于分析和控制

幸运的是,以杜邦公司oxone®为主要成份的新一代的微蚀体系已经崭露头角了。相信国内的厂家对这种微蚀体系都不大熟悉。这里,笔者就向大家简要介绍下这种新的xx的微蚀体系。

oxone® 单过硫酸化合物的物理性质和化学性质概述

oxone®单过硫酸化合物是一种具有高氧化势能的过氧化物。它通常是白色的、颗粒状易流动的粉末、常作为活性组分加入到很多的高质量的微蚀刻剂配方中。它可以当场或预先配制好规定浓度的蚀刻剂,

oxone®的活性组分是过硫酸氢钾(khso5),它是单过硫酸的酸性盐(也称作caro盐)。它作为三合盐的一个组成部分以分子式2khso5 ?khso4-k2so4 的形式存在。在酸性条件下单过硫酸盐的氧化势能(e)是+1.44v。由于oxone®的特殊化学性,它为铜表面提供了一种选择性的、高效的、可控的氧化剂。槽液中铜(cu2+)的浓度对单过硫酸化学物质没有催化作用。因此,蚀刻作用对微蚀刻剂寿命没有直接的影响。

oxone®单过硫酸化合物的使用在印刷线路板加工中的优势

oxone®单过硫酸化合物作为微蚀刻剂组分,其特别好的质量,可以从其达到上述要求的特性和与普通替用物质(过硫酸钾(钠)、双氧水/硫酸)相比较。

均一、可控的蚀刻速率

单过硫酸化合物的活性氧(ao)含量比起过而硫酸化合物,从热力学角度来说,单位重量的的单过硫酸化合物比过硫酸化合物为铜提供了更多的活性氧。这一点可以从图一看出。在槽中铜离子浓度增大的情况下,比起过硫酸钠(sps),单过硫酸盐的蚀刻速率更加稳定。这主要是由以下原因决定的:cu2+ 不能够催化单过硫酸盐的氧化反应速率,但可以显著催化过硫酸盐和双氧水的氧化反应速率。过硫酸化合物和过氧化物的氧化反应比起单过硫酸化合物更加复杂,前者通常是通过难以控制的自由基反应进行的。

被处理的表面更一致,更可控

使用oxone®单过硫酸化合物进行微蚀刻,可以获得,更好的、选择性的具有清晰的蚀刻界面的x射线照片和均匀的表面(如显微镜照片所示)。过硫酸化合物的微蚀刻作用就不够统一和连续,而双氧水的微蚀刻作用就过于强烈,使得界面过于粗糙。

药液更稳定,更持久

作为固体,oxone®单过硫酸化合物是相对稳定的过氧化物。在推荐的条件下储存,活性每月损失少于1%。同样的,作为典型的微蚀刻液组分(包括1-5%的硫酸)的一部分,溶液中的单过硫酸化合物在长期范围内相当稳定。这一点可以从图2看出。图中,在非铜离子溶液中oxone®的稳定性与过硫酸钠作了对比。其中作对比的条件是相同的:过氧化物浓度120g/l,温度20和35℃[68和95°f],硫酸1.5vol%。实际操作中的区别更加明显,因为,铜离子不能够催化单过硫酸化合物的分解。单过硫酸化合物的稳定性使加工过程变得准确和容易控制,提高了板的完整性和效益。

高溶解度,溶解速度快

oxone®单过硫酸化合物极易、迅速溶于水中,正如表1所示。20℃时,oxone®在水中的溶解度大于250g/l。

容易被冲洗

由于高的溶解度和残余物,单过硫酸化合物比起过硫酸化合物清洗更加容易方便。特别是过硫酸钾,它通常在使用后都需要用硫酸再次清洗,以保证表面的干净性,没有残余的过硫酸钾。而单过硫酸化合物使用后,只需要用水清洗。

药液易于分析和控制

对槽液组分的测量和控制对保持加工的连续性和重复性是非常重要的。除了在槽中条件下比过硫酸盐稳定,oxone®单过硫酸盐能够利用简单的分析程序??测量ao??来对液体进行监测。因为蚀刻速率不是由铜的量决定的,它只可以通过监测ao浓度来进行控制(见下文的测试方法)。对于过硫酸盐,因为蚀刻速率随着液体的用量不同而不同,所以ao和铜离子的浓度必须xx地监测到要求的蚀刻速率。除此之外,过硫酸化合物的xx测量分析方法更加复杂。

测试方法

活性氧/活性组分

1.用1000ml的烧瓶加入100ml的去离子水,溶解100g的碘化钾和20g的edta,制备碘化钾/edta溶液。再加入1滴的浓氨水到溶液中,之后用去离子水加满到1000ml。摇匀,保存在塑料瓶中。

2.准确称量2g槽液溶液加入到配有磁力搅拌器的的250ml的倾口烧杯中,加入100ml 去离子水和20ml先前配置好的碘化钾/edta溶液,充分搅拌,溶液会变成铁锈半的颜色(去离子水和所有试剂应该<20℃[68°f]

3.立即用0.1n的硫代硫酸钠溶液滴定测试标样至呈现淡黄色。加入(2-5ml)的足够的淀粉指示剂溶液,溶液将变成深兰色。立即继续用滴定法测试,直至出现一个可以至少30秒的无色端点。

4.再次重复上述步骤,记录下硫代硫酸钠的体积(ml)。

计算方法:

mlthio×nthio×0.008×100

%活性氧=

标样重量(克)

%活性氧

%活性成分(khso5)= 0.1053

微蚀刻液使用条件

oxone®单过硫酸化合物在微蚀刻中的使用条件根据所进行的特定的操作不同而相异。oxone®通常加入到高级的微蚀刻配方中,使用条件是由配方的制造者决定的。但是,一般来说,下面的条件范围是较常用的:

49.9-149.6g oxone®/l

1-5%(体积)硫酸

温度:32-43℃(90-110°f)

根据准确的使用条件,可以维持到1.3-6.5μm/min的蚀刻速度.

结束语

随着pcb向多层和hdi方向发展, 对pcb化学微蚀剂的要求越来越高,而象过硫酸盐/硫酸、双氧水/硫酸体系的微蚀剂的不稳定性和使用不方便,将会不能够满足要求。而以oxone®为主要成份的微蚀体系,就日益显示其优势。在这里,我们再次总结新一代微蚀体系的优点:

▲均一、可控的蚀刻速率,使用方便;

▲被处理的表面更均一,而且可以根据需要调控所需要的效果;

▲溶解度大,溶解速度快,溶解方便;

▲蚀刻后体系容易清洗,残余极少;

▲化学性质稳定、储藏容易;

▲药液更加持久、稳定,易于分析;

▲药液组成简单,不含螯合剂,废液处理简单;

▲使用于过硫酸盐体系相似,无须更换设备。

以上这些优点是以往旧的微蚀体系不能够比?的,用于pcb的生产制作中,能够提高pcb的质量,提高生产效率。在这里,笔者只是向大家宣传这样一个信息,而且,在国外的某些pcbxx生产商已经将这个体系推出市面。而中国大陆的pcb行业正在迅猛的发展,若是国内生产pcb、fpc以及hdi等厂家能够采用这种新一代的微蚀体系,相信更能够增加我国pcb在国际上的竞争地位

 

<#--{zx1}日志--> <#--推荐日志--> <#--引用记录--> <#--相关日志--> <#--推荐日志--> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构-->
郑重声明:资讯 【化镍金工艺控制- xxppxpxp的日志- 网易博客】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——