数据挖掘是用来预测未来的,发现潜在的数据价值。 数据挖掘有几种算法,按照算法对原始数据分析,得到潜在的数据关系.有个比较好的例子就是啤酒与尿布. 下面是一段引用: 我们先来看一个数据挖掘的故事, "尿布与啤酒"的故事是关于数据挖掘最经典和流传最广的故事。 总部位于美国阿肯色州的世界xx商业零售连锁企业沃尔玛(Wal Mart)拥有世界上{zd0}的数据仓库系统。为了能够准确了解顾客在其门店的购买习惯,沃尔玛利对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用NCR数据挖掘工具对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!" 这是数据挖掘技术对历史数据进行分析的结果,反映数据内在的规律。那么这个结果符合现实情况吗?是否是一个有用的知识?是否有利用价值? 于是,沃尔玛派出市场调查人员和分析师对这一数据挖掘结果进行调查分析。经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30% ~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 既然尿布与啤酒一起被购买的机会很多,于是沃尔玛就在其一个个门店将尿布与啤酒并排摆放在一起,结果是尿布与啤酒的销售量双双增长。 按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。 |