3.2.8 霍尔齿轮传感器
用2.2.2.3中介绍的差动霍尔电路制成的霍尔齿轮传感器,如图22所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图23所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足0.4°曲轴角的要求,不需采用相位补偿。 (2)可满足0.05度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。
|
3.2.9 旋转传感器
按图24所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。
由此,可对转动物体实施转数、转速、角度、角速度等物理量的检测。在转轴上固定一个叶轮和磁体,用流体(气体、液体)去推动叶轮转动,便可构成流速、流量传感器。在车轮转轴上装上磁体,在靠近磁体的位置上装上霍尔开关电路,可制成车速表,里程表等等,这些应用的实例如图25所示。 图25的壳体内装有一个带磁体的叶轮,磁体旁装有霍尔开关电路,被测流体从管道一端通入,推动叶轮带动与之相连的磁体转动,经过霍尔器件时,电路输出脉冲电压,由脉冲的数目,可以得到流体的流速。若知管道的内径,可由流速和管径求得流量。霍尔电路由电缆35来供电和输出。 |
3.2.10 霍尔位移传感器
若令霍尔元件的工作电流保持不变,而使其在一个均匀梯度磁场中移动,它输出的霍尔电压VH值只由它在该磁场中的位移量Z来决定。图28示出3种产生梯度磁场的磁系统及其与霍尔器件组成的位移传感器的输出特性曲线,将它们固定在被测系统上,可构成霍尔微位移传感器。从曲线可见,结构(b)在Z<2mm时,VH与Z有良好的线性关系,且分辨力可达1μm,结构(C)的灵敏度高,但工作距离较小。
用霍尔元件测量位移的优点很多:惯性小、频响快、工作可靠、寿命长。
以微位移检测为基础,可以构成压力、应力、应变、机械振动、加速度、重量、称重等霍尔传感器。
3.2.10.1 霍尔压力传感器
霍尔压力传感器由弹性元件,磁系统和霍尔元件等部分组成,如图29所示。在图29中,(a)的弹性元件为膜盒,(b)为弹簧片,(c)为波纹管。磁系统{zh0}用能构成均匀梯度磁场的复合系统,如图29中的(a)、(b),也可采用单一磁体,如(c)。加上压力后,使磁系统和霍尔元件间产生相对位移,改变作用到霍尔元件上的磁场,从而改变它的输出电压VH。由事先校准的p~f(VH)曲线即可得到被测压力p的值。
3.2.10.2 霍尔应力检测装置
图30示出用来进行土壤和砂子与钢界面上的法向和切向应力检测的霍尔传感器装置。(a)检测向切应力,(b)检测压应力。箭头所指是施加的外力方向。在图30(a)中,仪器上用钢作成上下两个块子,它们之间有两条较细的梁支撑,在钢下块上置一销柱,销上贴两对永磁体,形成均匀梯度磁场,在上块上贴两个霍尔传感器,受剪切力作用后,支撑梁发生形变,使霍尔传感器和磁场间发生位移,使传感器输出发生变化。由霍尔传感器的输出可从事先校准的曲线上查得与该装置相接的砂或土受到的剪切应力。
图30(b)的磁体固定在受力后产生形变的膜片上,霍尔传感器固定在一杆上。检测原理同上。应用检测压应力的原理,可构成检测重量的装置,称作霍尔称重传感器。
3.2.10.3 霍尔加速度传感器
图31示出霍尔加速度传感器的结构原理和静态特性曲线。在盒体的O点上固定均质弹簧片S,片S的中部U处装一惯性块M,片S的末端b处固定测量位移的霍尔元件H,H的上下方装上一对永磁体,它们同极性相对安装。盒体固定在被测对象上,当它们与被测对象一起作垂直向上的加速运动时,惯性块在惯性力的作用下使霍尔元件H产生一个相对盒体的位移,产生霍尔电压VH的变化。可从VH与加速度的关系曲线上求得加速度。
图32 霍尔机械振动传感器结构原理
3.2.10.4 霍尔振动传感器
图32所示为一种霍尔机械振动传感器。图中,1为霍尔元件,固定在非磁性材料的平板2上,平板2紧固在顶杆3上,顶杆3通过触点4与被测对象接触,随之做机械振动。元件1置于磁系统6中。当触头4靠在被测物体上时,经顶杆3,平板2使霍尔元件在磁场中按被测物的振动频率振动,霍尔元件输出的霍尔电压的频率和幅度反映了被测物的振动规律。 应当说明,在现代电子装置中,上述应力、压力、加速度、振动等传感器所得数据,都可经微机进行处理后直接显示出被测量数据或将被测量数据供各种控制系统使用。3.2.10.5霍尔液位传感器
图33示出两种霍尔液位检测装置。图(a)的结构简单,霍尔器件装在容器外面,永磁体支在浮子上,随着液位变化,作用到霍尔器件上的磁场的磁感应强度改变,从而可测得液位。图(b)的结构比较复杂,但可实现自动测量。
在图33(b)中,15是一个中空的非磁材料的管子,浮子19套在管子15外,可上下滑动,在19的上端放着永磁21,霍尔器件及其馈线和一根冲了许多孔的柔性带在一起,吊在管子15内。多孔柔性带像电影胶片一样,用绞盘39绞动,使之上下移动。当柔性带带着的霍尔器件接近浮子上的磁体21时,霍尔器件将输出霍尔电压,校准霍尔电压和浮子位置的关系,即可由所得的霍尔电压得到容器中液体的液位。用这种装置可实现远距离自动检测。
用霍尔液位传感器检测液位时,因霍尔器件在液体之外,且系无接触传感,在检测过程中不产生火花,且可实现远距离测量,因此,可用来检测易燃、易爆、有腐蚀性和有毒的液体的液位和容器中的液体存量,在石油、化工、医药、交通运输中有广泛的用途。尽管目前已有许多不同工作原理的液位计出现,但对上述各种危险液体的液位实测表明,霍尔液位传感器是其中{zh0}的检测方法和装置之一。
3.2.10.6基于位移传感的霍尔流量计
图34给出一种基于位移传感的霍尔流量计。叶轮在流体推动下旋转,带动螺杆旋转,使磁系统产生上下移动。流速高则位移量大。用霍尔器件检出位移而获得流速和流量。
3.2.11实现电-磁-电的转换
从所周知,在有电流流过的导线周围会感生出磁场,该磁场与流过的电流的关系,可由安培环路定理求出。
用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此,可以构成霍尔电流、电压传感器。
因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,因而可用它检测电功率,构成具有各种特殊功能的霍尔功率计和霍尔电度表。
由输入的电信号建立的磁场,经霍尔器件的作用,实现了磁电变换后,又变成电信号输出,这一变换实现了输入-输出信号间的电隔离,由此可构成隔离放大器、隔离耦合器等许多新型产品。
3.2.11.1霍尔电流传感器
霍尔电流传感器的结构如图35所示。用一环形导磁材料作成磁芯,套在被测电流流过的导线上,将导线中电流感生的磁场聚集起来,在磁芯上开一气隙,内置一个霍尔线性器件,器件通电后,便可由它的霍尔输出电压得到导线中流通的电流。图35(a)所示的传感器用于测量电流强度较小的电流,图35(b)所示的传感器用于检测较大的电流。 实际的霍尔电流传感器有两种构成形式,即直接测量式和零磁通式。
3.2.11.1.1直接测量式霍尔电流传感器
将图35中霍尔器件的输出(必要时可进行放大)送到经校准的显示器上,即可由霍尔输出电压的数值直接得出被测电流值。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。
这类霍尔电流传感器的价格也相对便宜,使用非常方便,已得到极为广泛的应用,国内外已有许多厂家生产。
3.2.11.1.2零磁通式(也称为磁平衡式或反馈补偿式)霍尔电流传感器 如图36所示,将霍尔器件的输出电压进行放大,再经电流放大后,让这个电流通过补偿线圈,并令补偿线圈产生的磁场和被测电流产生的磁场方向相反,若满足条件IoN1=IsN2,则磁芯中的磁通为0,这时下式成立: Io=Is(N2/N1)(5) 式中,I1为被测电流,即磁芯中初级绕组中的电流,N1为初级绕组的匝数,I2为补偿绕组中的电流,N2为补偿绕组的匝数。由式(5)可知,达到磁平衡时,即可由Is及匝数比N2/N1得到Io。
|
这个平衡过程是自动建立的,是一个动态平衡。建立平衡所需的时间极短。平衡时,霍尔器件处于零磁通状态。磁芯中的磁感应强度极低(理想状态应为0),不会使磁芯饱和,也不会产生大的磁滞损耗和涡流损耗。恰当地选择磁芯材料和线路元件,可做出性能优良的零磁通电流传感器。
在霍尔电流传感器的输出电路中接上恰当的负载电阻器,即可构成霍尔电压传感器。
霍尔电流传感器的特点是可以实现电流的“无电位”检测。即测量电路不必接入被测电路即可实现电流检测,它们靠磁场进行耦合。因此,检测电路的输入、输出电路是xx电隔离的。检测过程中,被测电路的状态不受检测电路的影响,检测电路也不受被检电路的景响。
霍尔电流传感器可以检测从直流到100kHz(通过仔细的设计和制作,甚至可以达到MHz级)的各种波形的电流,响应时间可短到1μs以下。
由于这些优点,霍尔电流传感器得到了极其广泛的应用。
3 2 12霍尔电流传感器的应用
3 2 12 1继电保护与测量
如图37所示,来自高压三相输电线路电流互感器的二次电流,经三只霍尔电流传感器H(图中只画出B相的一只),按比例转换成毫伏电压输出,然后再经运算放大器放大及有源滤波,得到符合要求的电压信号,送微机进行测量或处理。使用霍尔电流传感器很方便地实现了无畸变、无延时的信号转换。
3 2 12 2在直流自动控制调速系统中的应用
在直流自动控制调速系统中,用霍尔电流电压传感器代替电流互感器,不仅动态响应好,还可实现对转子电流的{zj0}控制以及对晶闸管进行过载保护,其应用线路如图38所示。
|