化工热力学_小晓筱xiao天地
  化学工程的一个分支,是热力学基本定律应用于化学工程领域中而形成的一门学科。主要研究化工过程中各种形式的能量之间相互转化的规律及过程趋近平衡的极限条件,为有效利用能量和改进实际过程提供理论依据。
  沿革  热力学是的一个组成部分,它是在蒸汽机发展的推动下,于19世纪中叶开始形成的。最初只涉及热能与机械能之间的转换,以后逐渐扩展到研究与热现象有关的各种状态变化和能量转换的规律。在热力学的基本定律中,热力学{dy}定律表述能量守恒关系,热力学第二定律从能量转换的特点论证过程进行的方向。这两个定律具有普遍性,在化学、生物学、机械工程、化学工程等领域得到了广泛的应用。热力学基本定律应用于化学领域,形成了化学热力学,其主要内容有热化学、相平衡和化学平衡的理论;热力学基本定律应用于热能动力装置,如蒸汽动力装置、内燃机、、冷冻机等,形成了工程热力学,其主要内容是研究工质的基本热力学性质以及各种装置的工作过程,探讨提高能量转换效率的途径。化工热力学是以化学热力学和工程为基础,在化学工业的发展中逐步形成的。化工生产的发展,出现了蒸馏、吸收、、结晶、蒸发、干燥等许多单元操作,以及各种不同类型的化学反应过程,生产的规模也愈来愈大,由此提出了一系列的研究课题。例如在传质分离设备的设计中,要求提供多组分系统的温度、压力和各相组成间的相互关系的数学模型。一般化学热力学很少涉及多组分系统,它不仅需要热力学,还需要应用一些统计力学和经验方法。在能量的有效利用方面,化工生产所涉及的工作介质比工程热力学研究的工作介质(空气、蒸汽、燃料气等)要复杂得多,且能量的消耗常在生产费用中占有很高比例,因此更需要研究能量的合理利用和位能量的利用,并建立适合于化工过程的热力学分析方法。1939年,美国麻省理工学院教授H.C.韦伯写出了《化学工程师用热力学》一书。1944年,美国教授 B.F.道奇写出了名为《化工热力学》的教科书。这样,化工热力学就逐步形成为一门学科。随着化学工业规模的扩大,新过程的开发,以及大型电子计算机的应用,化工热力学的研究有了较大的发展。世界各国化工热力学专家在1977年举行了首届流体性质和相平衡的国际会议,1980和1983年分别举行了第二届和第三届会议,还出版了期刊《流体相平衡》。化工热力学已列为大学化学工程专业的必修课程。
  主要内容  应用热力学基本定律研究化工过程中能量的有效利用(见过程热力学分析)、各种热力学过程、相平衡和化学平衡,还研究与上述内容有关的基础数据,如物质的p-V-T关系和热化学数据。
  对于与环境间既有能量传递又有物质传递的敞开系统,在计算物料进出系统前后物料的内能所发生的变化时,除了考虑热和功外,还须计入相应的动能和位能的变化,以及能量在系统中的积累。对于化工生产上经常遇到的定态流动过程(单位时间内出入的物料量相同,且不随时间而变化,系统中没有物质或能量的积累),{dy}定律可表达为:
ΔU+ΔEK+ΔEP=Q-W


或       ΔH+ΔEK+ΔEP=Q-WS

式中ΔU、ΔEK和 ΔEP分别为物料进出系统前后内能、动能和位能的变化;H为焓,H=U+pV,等于内能加上压力和体积的乘积;WS为轴功,指膨胀功以外的功,主要是与动力装置有关的功。
  热力学第二定律的应用  用以研究:①相平衡,在相平衡准则的基础上建立数学模型,将平衡时的温度、压力和各相组成关联起来,应用于传质分离过程的计算;②化学平衡,在化学平衡准则的基础上研究各种工艺条件(温度、压力、配料比等)对平衡转化率的影响,应用于反应过程的工艺计算,选择{zj0}工艺条件;③能量的有效利用,功可以xx转变为热,热转变为功则受到一定的限制,为了节约能量,在可能条件下功的消耗越少越好。对化工过程所用的热能动力装置、传质设备和反应器等,都应该进行过程的热力学分析,从而采取措施以节约能耗,提高经济效益。
  热力学第二定律的建立是从研究蒸汽机效率开始的。研究表明:在高温T1与低温T2两个热源间工作的任何热机(将热转变为功的机器,如蒸汽机)的热机效率η(从高温热源吸收的热中转变为功的分率),以工作过程为可逆过程(见热力学过程)的热机(即可逆热机)的效率ηr为{zg},且ηr=(T1-T2)/T1。这种可逆热机的工作过程称为卡诺循环。这个规律称为卡诺定理,它是有效利用能量的依据。

上面的卡诺定理可以由此式导出。由于可逆过程是在平衡条件下进行的,因而热力学第二定律提供了一个判断是否达到平衡的普遍准则。应用于相变化和化学变化时,可导出更具体的相平衡准则和化学平衡准则。
  研究方法  有下述两种:
  经典热力学方法  热力学是一种宏观理论,不考虑物质微观结构。由热力学定律导出的结果,都是一些宏观性质间的联系,具有充分的可靠性和普遍性。例如从化工热力学导出的由p-V-T关系计算热力学性质(如内能、、及逸度)的公式,原则上适用于计算任何状态的任何物质,进而用于计算热力学过程、相平衡和化学平衡。但经典热力学方法不能解决由微观结构所决定的物质特性,例如物质的p-V-T关系的确定就超出了经典热力学的范畴。
  分子热力学方法  统计力学结合构作半经验模型的方法,在化工热力学的发展过程中正起着越来越重要的作用。它使建筑在热力学基本定律上的化工热力学,在解决其主要课题时,没有受到经典热力学方法的限制。统计力学是从物质的微观模型出发,运用统计的方法,导出微观结构与宏观性质之间的关系,例如从分子间相互作用的位能函数和径向分布函数,导出p-V-T关系。但由于分子结构十分复杂,统计力学目前还只能处理比较简单的情况。对于比较复杂的实际系统,须先作简化,建立一些半经验的数学模型,利用实验数据,回归模型参数。这种方法,在研究状态方程和活度系数方程中已广泛使用。
  现状和发展方向  在基础数据方面,目前已积累大量的热化学数据、p-V-T关系数据以及相平衡和化学平衡的数据,编制成许多xx的普遍化计算图表(如普遍化压缩因子图。已发展出几百种状态方程,少数状态方程还能兼用于气液两相。在活度系数方程和状态方程的基础上,进行相平衡关联方面,取得较显著的进展,对于许多常见系统,已经能用二元系的实验数据预测多元系的汽液平衡和气液平衡。已有几种基团贡献法,可用基团参数估算许多系统的汽液平衡和液液平衡。这种方法对新过程开发有很大的作用。复杂系统化学平衡的计算也有明显进展。化工过程的热力学分析方法已初步形成。在近期的研究工作中,除了继续进行基础数据的测定外,建立具有可靠理论基础的状态方程是相当活跃的领域,要求方程适用于极性物质、含氢键物质和高分子化合物,并能同时用于气相、液相和临界区域。非常见物质的、液液平衡和液固平衡,以及与流体萃取新技术有关的气液平衡和气固平衡,与气体吸收、湿法冶金和海洋能源开发有关的电解质溶液的研究,吸引了许多人的兴趣。化工热力学在生物化学工程中的应用也令人注目。还须指出,由于非平衡态热力学理论的发展,开始打破经典热力学不涉及过程速率的局限性。由于节约能源的重要性,化工过程的热力学分析的研究也正方兴未艾。


郑重声明:资讯 【化工热力学_小晓筱xiao天地】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——