利用微生物作用强化采油可行性研究报告(编号242)

     

利用微生物作用强化采油可行性研究报告

1.1石油开采

石油是一种复杂的烃类混合物,这些烃类可能以气态、液态或者沥青质的固态存在,它一般在地下的沉积岩层中存在,液态烃俗称为原油,它存在于储油岩层的孔隙中,孔隙的大小不同,因而开采时的难易程度也有所不同。在没有外压的情况下,孔隙中的原油很难溢出。

目前,世界上已形成三次采油的四大技术系列,即化学驱、气驱、热力驱和微生物驱。其中化学驱包括聚合物驱、表面活性剂驱、碱驱及其复配的二元、三元复合驱、泡沫驱等;气驱包括 混相/非混相驱、氮气驱、烃类气驱和烟道气驱等;热力驱包括蒸汽吞吐、热水驱、蒸汽驱和火烧油层等;微生物驱包括微生物调剖或微生物驱油等。四大三次采油技术中,有的已形成工业化应用,有的正在开展先导性矿场试验,还有的还处于理论研究之中。

1.2微生物强化采油(MEOR)技术概述

微生物采油技术,即微生物提高原油采收率技术(microbial enhanced oil recoverg MEOR),是通过将筛选的微生物注入油藏,利用微生物在油藏中的有益活动,微生物的代谢产物与油藏中液相和固相的互相作用,对原油/岩油/水界面性质的特性作用等,改变原油的某些物理化学特征,改善原油的流动性质,从而提高原油采收率的综合性技术。

利用微生物降解技术对原油中的沥青质等重质组分进行降解,可以降低原油粘度,提高油藏采收率,这一技术在采油过程中得到了一定的应用并有继续发展的趋势。

MEOR技术现已在一些国家获得成功地应用。与其他三次开采技术相比,它具有适用范围广,工艺简单,投资少,见效快,无污染等特点。它甚至可在7.5%(质量分数)的高盐度下,温度达80℃,压力达10.3 MPa下的石油储层的条件下采用。但MEOR技术局限性在于微生物在温度较高、盐度较大、重金属离子含量较高的油藏条件下易于遭到破坏,微生物产生的表面活性剂和生物聚合物本身有造成沉淀的危险性,并且培养微生物的条件不易把握。因此,该法的发展方向是培养耐温、耐盐、耐重金属离子的易培养菌种,例如曾有报道一种能经受71℃、30 MPa、和pH达9的严酷条件的嗜极端酶首次应用于油田采油:美国Hallisurton能源服务公司将把Diversa公司制造的一种嗜热酶加入该公司已获专利的压裂液中。压裂液是xx聚合物,在高压下使用于岩层中压出裂缝。一旦岩层被压裂,压裂液中的酶就会使物质分解,降低油的粘度,从而使油能流出裂缝。这一用途需要耐高温和高压的“坚强”酶。这些酶首次是在意大利的武尔卡诺海滨的热喷泉中生活的微生物内发现的。

2.1微生物采油的机理

该技术的理论依据是使用添加氮、磷盐、氨盐的充气水使地层微生物活化。其机理包括:

①就地生成CO2以增加压力来增强原油中的溶解能力;

②生成有机酸而改善原油的性质;

③利用降解作用将大分子的烃类转化为低分子的烃;

④产生表面活性剂以改善原油的溶解能力;

⑤产生生物聚合物将固结的原油分散成滴状;

⑥对原油重质组分进行生化活性的酶改进;

⑦改善原油粘度。

2.2.微生物采油的应具体方案

2.2.1单井周期注入微生物采油

单井周期注入法,又称单井吞吐法。为了提高低产油井的产量,需要将所筛选的采油微生物和其培养液、营养液从单口采油井高压泵入油层;关井数日或数周,使微生物在油层中生长繁殖,并产生代谢产物,微生物可运动到油井周围直径10m左右的储油岩层;通过微生物及其产物的作用,疏通被堵塞的油层孔隙通道,增加原油的流动性,提高原油的采收率。关井时间视微生物的生长繁殖情况而定,这主要取决于油层的温度。开井后,采油微生物可被反排出来,故称单井吞吐法。周期性的微生物采油,增油期维持时间较短,一般为半年或数月。为了保持高产,待采油量降低后,需要再次循环注入采油微生物,有一定局限性。在同一地区重复进行了周期性注入时常出现生物净化作用。微生物单井吞吐采油的选井应注意以下几个问题:

① 产能低,渗透率低的油井不适应单井吞吐;

② 易出砂井,不宜采用单井吞吐;

③ 黏土含量高的油层不宜采用;

④ 高温、高压井不宜采用微生物开采。

微生物注入量,注入周期确定要合理。菌液用量与处理频率是否是{zj0}{zy},是影响经济效益的重要因素,应根据具体情况调整,一般不宜超过六轮。微生物单井吞吐采油应在含水70%~90%时进行,有利于微生物生存、繁殖。微生物单井吞吐是小断块,连通状况差,地层温度低的“土豆 ”油藏的很好的增产措施。

2.2.2微生物驱油

微生物驱油是指将筛选到的采油微生物与其营养物从注水井高压泵入储油层。微生物随注入水在油层内迁移,直至运动到储油层深部。微生物在油层内生长繁殖,并产生多种代谢产物。细胞和代谢产物分别作用于原油,发挥出各自的驱油功能,降低原油黏度,增加原油的流动性。驱替原油从油井中采出,从而提高原油采收率。微生物驱油是所有的微生物采油方法中真正提高原油采收率并且效果{zh0},显效最长的微生物显油技术。具体操作如下:

{dy}步,现场取样,从准备用微生物处理的油藏原油、水中分离菌中。从油藏中分离出的微生物应用与其油层条件类似的油藏效果较好。

第二步,厌氧富集。从现场采集的油、水样品装入加压厌氧的菌管中或试验装置、富集装置中进行样品富集厌氧培养。

第三步,微生物筛选。将厌氧的培养物置于将进行微生物处理的油藏条件下,考虑新黏试验,从中筛选适于油藏条件的微生物。然后进考察菌种与注入水的配伍性。取污水处理站及注水井的水样,进行室内试验,观察注入水对菌株的伤害,选择抗伤害能力强的菌株。注入水对菌体的伤害是由于水处理药剂所致,尤其是xx剂更为严重。因此,在施工过程中可停止加入水处理药剂。

第四步,驱油模拟实验。用微型填矿柱做岩芯模型,饱和原油和气态烃,模拟油藏高温、高压、高矿化度条件,用筛选的微生物菌种做室内驱油试验。在微型岩芯模拟试验的基础上,进一步做放大岩芯模拟试验,根据驱油效果确定微生物菌种。

在做驱油岩芯模拟试验时,应同时对筛选的菌种做驱油机理的研究。将筛选的菌种在相应的条件下做原油降黏效果分析及产酸,产气定量分析,根据微生物的作用效果进一步确定采油现场应用的微生物菌种。

当微生物采油法用于开采深层高温油井时,从自然界分离到的微生物很少能够满足所有的要求。因此,应当通过遗传操作来改造现有菌种及构建符合特殊要求的微生物菌侏。

2.2.3xx油藏微生物群落驱油

油藏中存在着xx的微生物群落,但是由于某些营养物质的贫乏,使原先微生物的数量少,活性低。如果从注水井中将微生物生长缺乏的营养物注入油层,xx油藏内的xx微生物群落,使其生长繁殖,并产生多种代谢产物,作用于原油,提高原油的采收率,可以节约大量的成本。实践证明,在油藏条件下存在着本源微生物,本源微生物严格厌氧的单独存在,从油藏种类的发展来看,由于微生物生理特性的作用,在矿场经历着自然的选择,也可能涉及它们进入地层的地质时期,这些厌氧微生物几乎总是与发酵、硫酸盐还原、甲烷xx结合在一起。这微生物可以利用原油中的烃炭作为碳源,从而使用微生物方法采油变得更加简单。

2.2.4微生物选择性封堵

微生物封堵油层的机理是:将形体较大且产生表面黏稠物质的微生物菌种从注入井中注入,微生物可以送移到大孔道或有溶洞的储油岩层部位,通过微生物的生长繁殖和代谢作用,产生大菌体细胞和细胞分泌的表面黏稠物质,在地层的岩石表面形成一层生物膜,有效地封堵大孔道或溶洞,降低地层的渗透率。因为微生物胞外多糖对细胞的亲和力大于对裸露岩石的表面亲和力,所以注入的微生物细胞向封堵部位的生物膜聚集,形成更大的封堵层。xx产生的机械封堵会使驱油液从高渗区转向未波及区,提高波及斤数,防止注入水“指状”流动,提高原油采收率。

3.1采油微生物应具备的生物学特性

采油微生物可以降低油—水界面和油—岩石界面的张力,降低原油黏度,由此改变原油的性质。因此,注入油层的采油微生物必须具备如下的基本生物特征:

①厌氧或兼性厌氧。在地层无氧条件下能生长繁殖并进行厌氧发酵,在地上有氧条件下也能生长繁殖。

②在油层高温、高压、高盐等极端环境下能生长繁殖并代谢,且生长速度比油层中本来存在的微生物生长速度快。

③采油微生物{zh0}能以油层中存在的烃类作碳源,能以储油层内的无机盐作为氮源或营养元素,以减少成本。

④采油微生物必须与其注入油层的环境条件相配伍相适应。能在油层内运移,能生长繁殖,并产生有机、气体、表面活性剂、生物聚合物、有机溶剂等多种代谢产物。

5能在50°C以上的温度及缺氧条件下生长的中度嗜盐xx,是用于微生物采油的最有力的竞争者。

3.2菌种的选择及营养物的配制

3.2.1菌种的选择

不同的微生物适应地层中各种条件的能力及产生的代谢物不同。另外,不同的生物工程目的所需的微生物代谢产物也有所不同。因此,根据地层条件和生物工程目的合理选择菌种是工程获得成功的关键。

地层条件中,着先需要考虑的是地层温度,因为不同的微生物耐热能力不同(表1)。

表1   微生物生长的温度范围

 

其他需要考虑的地层条件有矿化度、渗透率、PH和地层水化学组分等。通常,做一顶有关地层流体和所用的微生物之间的配伍性试验,即能检验出微生物能否适应这些条件,从而大体上预测出应用这种微生物能否获得增产效果。这种配伍性试验可用试管进行。方法是将八种微生物配方分别在地层流体(有时还要用地层岩石)中进行培养。对微生物的生长状况和代谢产物的生成情况进行测试,以便确定出{zj0}条件。用这种方法确定的标准可用来为具体的油藏条件选择出在用的微生物配方。

根据微生物工程目的选择菌种时可参考表2中列出的微生物处理类型

表2     微生物地层处理类型

微生物采油工艺

生产问题

所用的微生物类别

微生物增产处理

地层压力不足;注入能力问题;有毛管力造成的束缚油

通常使用能产生表面活性剂、气体、酸和醇类的xx

微生物洗井

结蜡问题

使用能产生乳化剂,表面活性剂和酸的微生物,能降解烃类的微生物

微生物强化水驱

有毛管力造成的束缚油

通常使用能产生表面活性剂、气体、酸和酶的微生物

微生物改善渗透率

波及效率低

使用能产生聚合物或产生大量生物的xx

生物聚合物驱油

注井入突进,不利的流度化

使用能产生聚合物的微生物

微生物堵水

高水油比

使用能产生聚合物或大量生物质的微生物

 

3.2.2营养液的配制

对注入地层的微生物必须提供营养液。营养液的配制主要根据选用的菌种、地层条件和工程目的来确定。通常,菌种不同,所需的营养物质也有所不同。微生物培养实验有助于确定微生物的{zy}营养配方组分。微生物一般都需要磷化合物,含氧化合物,含碳化合物,硫,各种微量元素,氢、维生素、二氧化碳等。地层中可能会缺乏这些营养物质中的一种或数种。因此,营养液的组分主要包括地层中缺乏的营养物质,利用从地层中取得的岩样,通过原子吸收先  法、离子层析法,由感耦合等离子体等技术可以额定出地层中缺乏的营养物质。

所选用的各种营养物质应当是在地层条件下具有热稳定性和化学稳定性的,而且不会与地层流体中的无机盐反应而形成沉淀物,以免堵塞地层。另外,在含黏土的地层中,营养液应不至于引起地层黏土膨胀和微粒远移。

为了增强微生物配方的效果,可选择某种化学试剂作为微生物配方的增效剂。增效剂可直接添加到菌种配方中,也可用作微生物增产处理液的前置液。增效剂可采用生物表面活性剂,也可采用工业合成化学剂。当增效剂作为前置液使用时,可通过岩石表面吸附来提高微生物细胞及微生物代谢产物的传递速度。当增效剂直接添加到微生物配方中时,可产生协同效应。另外,某些化学剂能促进微生物产生大量代谢产物,或通过改变微生物细胞的代谢途径而产生不同的代谢产物。

对于单井处理,在静压头下使菌种流入井内即可。可在注水井上安装一个旁通的接头,由此注入的菌种即被注入水冲入地层。在水驱开发中大规模处理时,{zh0}用大罐装微生物和营养液,再通过分流管线泵入各注入井。

3.3适合微生物采油工程的油藏筛选标准和筛选程序

油藏是由固、液、气三相构成的,其物理化学性质对微生物的生存、繁殖和代谢活动都有决定性影响。并非所有油藏皆适于用微生物采油。根据大量的研究,油层的深度、压力、温度、地层水的化学组分、矿化度、PH和原油密度等参数对微生物的生存和代谢活动都有具体限制作用。只有这些参数的值在适当的范围内时,应用微生物采油技术才能获得增产效果。

根据油藏中对微生物有限制作用的各种参数,制定了以下油藏筛选程序(表3)

                表3            油藏筛选程序

 

3.4 微生物产品大致工艺流程

 

 

 

 

 

 

 

 

 

 

 

微生物采油的成本低,它不需要复杂的地面设施和昂贵的原材料,其本设施仅有装有制备xx接种物所需的浸液加热器和注入泵,而且这些设施在许多注入场地均可使用。因此,进行微生物采油的成本如下(表4):

表4    成本核算    (以年产10000m3菌液计)

 

微生物采油方法有其自身的局限性:①对于高温(>89°C)或高含盐量( >10%)的地层通常不能适用;②营养基中有时含有一定量的重金属离子,可能对微生物有副作用;③某些xx能产生黏性渗出液即菌胶团,堵塞地层;④钢套管、油管及泵受到硫酸盐还原菌产生的腐蚀性化学物质的侵蚀,能使低硫原油性能破坏;⑤由于硫酸盐还原产生的H2S在地层中与铁反应生成硫酸亚铁黑色沉淀,经常堵塞污染生产管线;⑥有些微生物能导致用于泵油工艺的化学剂降解。

目前研究的微生物只能在适中的温度,盐含量及压力下存活。如果地理条件多变,这些微生物的有效利用会受到限制。然而,有显著的证据可以说明石油储存库不像一些实验室研究所表明的那样是微生物经受不住的环境,事实上微生物能从深的储存库中得到分离,并且它们可能已发展了专门的机制来克服低氧。一些不需氧的微生物已被分离了。对这些微生物的进一步研究可能会利于石油工业中有用微生物的开发。另外,也可对现有采油微生采用基因修饰等手段以克服其局限性。

微生物采油自20世纪20年代被提出后,由于受到多种因素的限制,发展一直很缓慢,20世纪20年代世界石油危机后,各国加速了对xx采油的研究。最近几年国外研究微生物采油的大学越来越多,许多大石油公司以及独立的高科技实验室也在进行研究和开发,并取得许多可喜的成果。

在采油微生物研究初期,主要侧重于菌种的筛选,菌种的性能评价,室内模拟试验,矿厂应用试验与提高原油采收率的研究。微生物采油技术在广泛应用的基础上,其深入研究主要表现在两个方面,一是微生物采油技术与矿厂工程学的深入研究;二是石油微生物菌种的生物学特性的基础研究。

为了给微生物采油技术提供性能优良的菌种,采油微生物菌种的基础研究十分活跃,主要表现在以下五个方面:微生物生理学研究,石油微生物遗传学研究,者热菌,耐温菌的基础研究,石油微生物酶的研究,石油微生物的分类鉴定。

目前大部分微生物采油现场实验均是含蜡量高的轻质油中进行的,而胶质、沥青质含量高的黏油微生物缺乏足够的资料。显然,原油黏度越高,通过微生物生命活动降低其黏度,增加其流动性也越困难。

目前,高黏油微生物采油技术报道极少,高黏油的微生物开采现场实验层有成功报道,但为数不多。高胶质、沥青质含量也给高黏油的微生物开采带来了不少困难,但是通过筛选高黏油优良菌种,进行高黏微生物开采矿场实验,探讨高黏油微生物采油机理,是目前世界上亟待解决的一项技术难题。

微生物采油可运用于现有全部适用于微生物采油的油藏,无需特别增加采油设施,可能需要重新铺设管线及钻注入井(一次性投资),但就其成本仍要低于其他驱油方法(较化学驱油而言,微生物驱油成本为约为其1/2~2/3左右),且石油开采为国家垄断行业,无需特别增加市场营销方面的费用。

参考国内外相关产品的价格,定每立方米菌液售价9.13亿元,年收入9.13亿元。

产品固定资产2580万元,运行成本1260万元/年,厂房设备折旧费120万/年,不可预见费50万/年,税收3652万元/年,小计5082万元/年。

产品净利润8.6218亿元,当年收回成本。此后每年xxxx率1696.5%。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

参考文献:

1.张华.国外三次采油应用现状及发展趋势,资源网

2.崔波,石文平,戴树高等. 高粘度稠油开采方法的现状与研究进展

3.微生物采油可行性报告

4.微生物采油综述,百度百科

郑重声明:资讯 【利用微生物作用强化采油可行性研究报告(编号242)】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——