莱布尼兹 (1646-1716)
莱布尼兹是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。
生平事迹
莱布尼兹出生于德国东部莱比锡的一个书香之家,广泛接触古希腊罗马文化,阅读了许多xx学者的著作,由此而获得了坚实的文化功底和明确的学术目标。15岁时,他进了莱比锡大学学习法律,还广泛阅读了培根、开普勒、伽利略、等人的著作,并对他们的著述进行深入的思考和评价。在听了教授讲授欧几里德的《几何原本》的课程后,莱布尼兹对数学产生了浓厚的兴趣。17岁时他在耶拿大学学习了短时期的数学,并获得了哲学硕士学位。
20岁时他发表了{dy}篇数学论文《论组合的艺术》。这是一篇关于数理逻辑的文章,其基本思想是出于想把理论的真理性论证归结于一种计算的结果。这篇论文虽不够成熟,但却闪耀着创新的智慧和数学才华。
莱布尼兹在阿尔特道夫大学获得博士学位后便投身外交界。在出访巴黎时,莱布尼兹深受帕斯卡事迹的鼓舞,决心钻研高等数学,并研究了笛卡儿、费尔马、帕斯卡等人的著作。他的兴趣已明显地朝向了数学和自然科学,开始了对无穷小算法的研究,独立地创立了微积分的基本概念与算法,和牛顿并蒂双辉共同奠定了微积分学。1700年被选为巴黎科学院院士,促成建立了柏林科学院并任首任院长。
始创微积分
17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼兹在1673-1676年间也发表了微积分思想的论著。以前,微分和积分作为两种数学运算、两类数学问题,是分别加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。只有莱布尼兹和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。
然而关于微积分创立的优先权,数学上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼兹,但莱布尼兹成果的发表则早于牛顿。莱布尼兹在1684年10月发表的《教师学报》上的论文,“一种求极大极小的奇妙类型的计算”,在数学史上被认为是最早发表的微积分文献。牛顿在1687年出版的《自然哲学的数学原理》的{dy}版和第二版也写道:“十年前在我和最杰出的几何学家G、W莱布尼兹的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最{zy1}的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外。”因此,后来人们公认牛顿和莱布尼兹是各自独立地创建微积分的。牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼兹。莱布尼兹则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。莱布尼兹认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他发明了一套适用的符号系统,如,引入dx 表示x的微分,∫表示积分,dnx表示n阶微分等等。这些符号进一步促进了微积分学的发展。
1713年,莱布尼兹发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。
莱布尼兹在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。 莱布尼兹曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在后来的研究中,莱布尼兹证明了自己结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论。此外,莱布尼兹还创立了符号逻辑学的基本概念,发明了能够进行加、减、乘、除及开方运算的计算机和二进制,为计算机的现代发展奠定了坚实的基础。
丰硕的物理学成果
莱布尼兹的物理学成就也是非凡的。他发表了《物理学新假说》,提出了具体运动原理和抽象运动原理,认为运动着的物体,不论多么渺小,他将带着处于xx静止状态的物体的部分一起运动。他还对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型,并在《教师学报》上发表了“关于笛卡儿和其他人在自然定律方面的显著错误的简短证明”,提出了运动的量的问题,证明了动量不能作为运动的度量单位,并引入动能概念,{dy}次认为动能守恒是一个普通的物理原理。他又充分地证明了“永动机是不可能”的观点。他也反对牛顿的{jd1}时空观,认为“没有物质也就没有空见,空间本身不是{jd1}的实在性”,“空间和物质的区别就象时间和运动的区别一样,可是这些东西虽有区别,却是不可分离的”。在光学方面,莱布尼兹也有所建树,他利用微积分中的求极值方法,推导出了折射定律,并尝试用求极值的方法解释光学基本定律。可以说莱布尼兹的物理学研究一直是朝着为物理学建立一个类似欧氏几何的公理系统的目标前进的。
发明乘法计算机
德国人莱布尼兹发明了乘法计算机,他受中国易经八卦的影响最早提出二进制运算法则。莱布尼兹对帕斯卡的加法机很感兴趣。于是,莱布尼兹也开始了对计算机的研究。1672年1月,莱布尼兹搞出了一个木制的机器模型,向英国皇家学会会员们做了演示。但这个模型只能说明原理,不能正常运行。
1674年,{zh1}定型的那台机器,就是由奥利韦一人装配而成的。莱布尼兹的这台乘法机长约1米,宽30厘米,高25厘米。它由不动的计数器和可动的定位机构两部分组成。整个机器由一套齿轮系统来传动,它的重要部件是阶梯形轴,便于实现简单的乘除运算。莱布尼兹设计的样机,先后在巴黎、伦敦展出。由于他在计算设备上的出色成就,被选为英国皇家学会会员。
中西文化交流之倡导者
莱布尼兹对中国的科学、文化和哲学思想十分关注,是最早研究中国文化和中国哲学的德国人。他向耶酥会来华传教士格里马尔迪了解到了许多有关中国的情况,xxx蚕纺织、造纸印染、冶金矿产、天文地理、数学文字等等,并将这些资料编辑成册出版。他认为中西相互之间应建立一种交流认识的新型关系。在《中国近况》一书的绪论中,莱布尼兹写道:“全人类最伟大的文化和最发达的文明仿佛今天汇集在我们大陆的两端,即汇集在欧洲和位于地球另一端的东方的欧洲——中国。”“中国这一文明古国与欧洲相比,面积相当,但人口数量则已超过。”“在日常生活以及经验地应付自然的技能方面,我们是不分伯仲的。我们双方各自都具备通过相互交流使对方受益的技能。在思考的缜密和理性的思辩方面,显然我们要略胜一筹”,但“在时间哲学,即在生活与人类实际方面的伦理以及治国学说方面,我们实在是相形见拙了。”在这里,莱布尼兹不仅显示出了不带“欧洲中心论”色彩的虚心好学精神,而且为中西文化双向交流描绘了宏伟的蓝图,极力推动这种交流向纵深发展,是东西方人民相互学习,取长补短,共同繁荣进步。莱布尼兹为促进中西文化交流做出了毕生的努力,产生了广泛而深远的影响。
阿基米德先于牛顿阐述微积分 险改人类历史
据美国媒体近日报道,1666年,牛顿(1642年-1727年)发现了微积分,世界科学界公认为近代物理学从这一年开始。然而美国科学家根据一本失传2000多年的古希腊遗稿发现,早在公元前200年左右,古希腊数学家阿基米德(公元前287年-前212年)就阐述了现代微积分学理论的精粹,并发明出了一种用于微积分计算的特殊工具。美国科学家克里斯·罗里斯称,如果这本阿基米德“失传遗稿”早牛顿100年被世人发现,那么人类科技进程可能就会提前100年,人类现在说不定都已经登上了火星。
遗稿800年前遭蹂躏
据报道,这本阿基米德失传遗稿如今躺在美国马里兰州巴尔的摩市的“沃特斯艺术博物馆”里,该馆珍稀古籍手稿保管专家阿比盖尔·库恩特接受美国记者采访时称,许多美国科学家目前正在辛苦地xx这本“阿基米德失传遗稿”中的古老秘密,这本阿基米德遗稿很可能包含了近代科学家殚心竭虑几世纪都没有发现的东西。
林群:机会来自积累
“科学创新的必要条件之一是科学家的兴趣。科技发展的最根本目的是服务于人类,改变人类的生活方式。在科学创新的指导方向上,国家应树立战略性指导思想。”九届全国人大代表、林群院士在两会期间就科技创新问题接受本报记者采访时说,“指引科学家产生‘大兴趣’还是‘小兴趣’,是从全局考虑还是从细节考虑,是非常重要的。” 林群代表认为,在这方面,我们与欧洲的科学传统相比,嗅觉和敏感性要差一些。必须在此方面加强和改进,才有助于我国在基础研究以及有关国计民生和国家利益的科学课题上取得重大突破和原始性创新。
林群代表还对当前科技界存在的急功近利的做法提出了批评,强调长期积累在创新中的重要性。他说,科学创新基本上是一种探索,需要不断地积累和机会的出现,应该是水到渠成的,这是有其内部规律性的。不能只凭主观愿望搞大跃进。现在有一些舆论说不要搞教授终身制,这种说法不利于创造稳定自由的创新环境。甚至有人提出“千篇(论文)工程”的口号,这是急功近利的典型表现,这样只能造就庸才,不可能产生原始性创新。
林群院士说,在基础研究领域,取得重大突破或者产生原始性创新并不是一朝一夕的事情,任何一个重大突破都是通过长时间的积累,{zh1}由少数人站在巨人的肩膀上完成的。
现代科学研究的传统在欧洲,大多数重大发现也在欧洲产生。回顾欧洲科学的发展史,在数学领域最伟大的创新之作是公元前300年前欧几里得《几何原本》,这是人类历史上{dy}次系统提出理性的思维方法。第二次重大创新则是微积分方法的诞生,而这之间经过了2000年的时间,{zh1}才由牛顿等几个“幸运儿”摘到了“苹果”。再看中国的数学研究,在公元500年前后就有《九章算术》,而一千多年后吴文俊院士在继承中国算法传统的基础上,开创了数学机械化的研究,取得了重大突破。因此,在浩瀚的科学海洋中,珍珠的产生和发现总是要经过漫长的时间,没有大多数人的不懈探索,就没有少数拾贝者的成功,这是可遇而不可求的。他说,在这个提倡和鼓励创新的时代,应该谨慎而理智地看到,“创新”一词已经被用得太多了,连研究生的毕业论文评定也流行加上“创新”二字。
林群院士强调,只有产生新的学科或对人类生活方式产生改变的科技成果才能真正称之为重大原始性创新。在20世纪评出的百年百位科学家中,图灵、哥德尔和冯·诺伊曼三位数学家虽然没有获得过菲尔茨奖(相当于数学的诺贝尔奖),但是他们从事的数学研究却给计算机的诞生、设计和发展奠定了理论基础,可以说,没有他们的工作,就不会有计算机的今天。这样的研究成果才是真正的重大原始性创新。
林群认为,目前,我国正处于经济快速发展的重要阶段,科技作为{dy}生产力,得到了政府的高度重视和大力支持,本届政府对科研领域的支持超过了历届。林群说,朱 基总理在四年前指出,科教兴国战略是本届政府的{zd0}任务。从1995年提出科教兴国战略到1998年科学院实施知识创新工程,“九五”以后,我国对原始性创新加大了支持力度,加快了革新步伐。从科技部到中科院,都紧锣密鼓地行动起来,为科技人员创新创造条件。重大科技创新产生的外部条件已经形成。政府的投入加大,以及硬件水平逐渐与世界接轨,并不等于会马到成功。一个课题的开展,从建立实验室到组织人才,这个过程一般需要2年左右,科研取得一定成果通常需要3~5年时间,而取得重大成果往往需要5年甚至10年的时间。因此,创新的产生不能急于求成。