电池的原理 在化学电池中,直接转变为是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。负极活性物质由电位较负并在电解质中稳定的还原剂组成,如锌、镉、铅等活泼金属和氢或等。正极活性物质由电位较正并在电解质中稳定的氧化剂组成,如、、等金属氧化物,氧或空气,卤素及其盐类,含氧酸及其盐类等。电解质则是具有良好离子导电性的材料,如酸、碱、盐的水溶液,有机或无机非水溶液、熔融盐或固体电解质等。当外电路断开时,两极之间虽然有电位差(),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两差的作用下即有电流流过外电路。同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。因此,电极反应可逆是构成蓄电池的必要条件。为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安·小时;n为电池反应的当量数。这是与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。实际上,当电流流过电极时,都要偏离热力学平衡的电极电势,这种现象称为极化。电流密度(单位电极面积上通过的电流)越大,极化越严重。极化现象是造成电池能量损失的重要原因之一。极化的原因有三:①由电池中各部分电阻造成的极化称为欧姆极化;②由电极-电解质界面层中电荷传递过程的阻滞造成的极化称为活化极化;③由电极-电解质界面层中传质过程迟缓而造成的极化称为。减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。 电池简介 电池的性能参数主要有、、和。电动势等于单位正电荷由负极通过电池内部移到正极时,电池(化学力)所做的功。电动势取决于材料的,与电池的大小无关。电池所能输出的总电荷量为电池的容量,通常用安培小时作单位。在电池反应中,1千克反应物质所产生的电能称为电池的理论比能量。电池的实际比能量要比理论比能量小。因为电池中的反应物并不全按电池反应进行,同时也要引起电动势降,因此常把比能量高的电池称做。电池的面积越大,其内阻越小。 电池的能量储存有限,电池所能输出的总电荷量叫做它的容量,通常用小时作单位,它也是电池的一个性能参数。电池的容量与电极物质的数量有关,即与电极的体积有关。 实用的化学电池可以分成两个基本类型:与[1]。原电池制成后即可以产生,但在放电完毕即被废弃。蓄电池又称为,使用前须先进行充电,充电后可放电使用,放电完毕后还可以充电再用。蓄电池充电时,电能转换成化学能;放电时,化学能转换成电能的。 核电池 电池的分类 |