神经科学:脑研究的综合学科 |
人各有所好, 一. 神经科学对社会和科学发展的意义 1.1 对于社会的发展和人类的健康,人脑所起的作用是世间任何事物不可替代的。神经科学研究对每个年龄层次的人都有意义。出生前的胎儿神经系统的形成和发育是正常脑功能的决定性基础;儿童脑的可塑性发育是人才智力和健康心理形成的关键;成年人脑的有效工作取决于神经网络中信息的高效传递和加工;老年人健康生活依赖于有无病理性衰变和神经损伤。 从发达国家的经历来看,随着以前常见病的减少和消失,影响人的高级功能的病如各种脑疾患占的比例会越来越高。这些疾病极大地影响人的健康,而且造成巨大家庭和社会负担,转用了本来可以用于社会发展的精力和经费。美国九十年代初的统计结果,65岁以上的人患老年痴呆占百分之11,每年消耗1131亿美元,精神疾病每年消耗351亿,脊柱损伤消耗226亿,中风消耗179亿,xx和多发性侧束硬化消耗55亿。中国这方面统计尚不全,在北京、上海的初步统计显示65岁以上的人患老年痴呆占百分之4.9,从健康史上看,中国人群脑疾患的整个趋势是会不断接近发达国家的。 人口素质的核心是智力。提高人口素质和控制脑疾患是世界性问题。而在中国,因为特殊的人口结构,又是更突出的课题。每 1.2 神经科学既是传统xx工业的主要基础,也是现代高技术产业-生物工程的重要支柱之一。传统xx工业的成功很大一部分归功于神经药理的研究。神经药理不仅仅是推出了大家可以想象的神经系统或神经疾患的xx,如各种xxxx、控制巴金森氏综合症的xx、控制精神病的xx、影响睡眠的xx等;神经药理也推出了大部分心血管xx,如很多控制血压、心律、微循环的xx都是靠影响神经对心血管的调节,从而达到控制心血管的目的。xx呼吸系统和消化系统的xx,也依赖和借鉴神经药理的研究结果,比如一些控制鼻塞、xx的药和控制胃酸的药是调节神经信号而产生作用。因为神经药理对大量xx发展非常重要,所以世界上传统xx工业起家的大药厂,靠神经药理为基础的占了很大比重,迄今仍是xx工业主力。 现代生物工程产业,是以分子生物学为基础。这一新型高技术产业还在快速发展,有大量企业兴起,已经有成功利润的企业屈指可数。就在这些成功的企业中,神经科学相关的xx也很受重视。比如,包括老年痴呆在内的神经退行性变的危害之广,使大家有共识其xx市场是很大的。因此,美国几家专攻神经退行性变的生物技术公司,股票上市时曾创记录。而且,靠传统xx工业起家的大药厂在吸收和推进生物技术产业的过程中,也注重神经科学有关的生物工程xx。 1.3 神经科学是综合性很强的交叉学科。它综合了多门学科,对神经系统进行全面的研究。它得益于这些学科,又推动这些学科;加速神经科学的发展可以带动一批相关学科的发展。 传统上,神经科学来源于生理学、生物化学、生物物理学、药理学、解剖学、胚胎学、神经病学和精神病学。在七十年代初神经科学形成单独的学科,到八十年代定型。分子生物学、遗传学、影象学、计算网络(神经网络)和认知科学等对神经科学的促进在近十到二十年很为明显。 以前,神经科学的各亚学科侧重单一的研究策略。神经解剖学发现神经系统的基本结构;神经生理学分析神经系统内信息传递的基本规律;生物物理学研究神经细胞的物理特性;神经生物化学找到神经系统的主要化学成份;神经遗传学了解影响神经系统结构和功能的遗传因素,这些基础科学部分成神经科学中的神经生物学部分。神经药理学一方面寻找xx疾病的xx,另一方面用分子作为工具来探索神经系统的功能;神经病理学着重神经、精神疾病的解剖结构变化;神经病学和精神病学主要是疾病的临床分析和xx;放射学仅起辅助临床诊断的作用;而心理学更是与自然科学缺乏联系。 现代神经科学的发展使其各亚学科有活跃的相互作用。这即表现在多学科的技术交叉上,也体现于学术思想和概念的交融上。现在,当神经生物学家用分子生物学发现一个基因及其产物分子后,要用多个途径研究它在神经系统形成和功能中的作用:可用免疫学技术辅助,靠解剖学观察来定位基因产物在神经系统什么部位存在,以生物物理学手段分析基因产物对神经细胞电活动的影响,用生理学方法研究它在信息传递中的作用。这些基本特征了解后,也可进一步用转基因技术或基因剔除技术来增加或减少基因产物的存在量,然后研究脑的高级功能的变化,如通过行为的分析看学习记忆是否受影响,或通过行为、病理等分析看是否导致了疾病的发生。这些综合研究可以揭示特定的基因是否参与脑的高级功能、或影响神经系统的疾病发生。现代影象学在神经科学中的应用是物理科学与生命科学相互作用的一个范例。正电子扫描和功能性核磁共振等无创性成象技术使人们观察活体脑的美梦成为可能;而神经系统的精细和复杂也要求和驱使这些技术不断改进和提高。神经系统内信息传递是控制论早期就感兴趣的问题。人脑具有所有人造机器所不及之处,信息科学一方面可以它为研究目的,一方面可以借鉴其优点,以改善人造机器。 因为神经科学高度综合性的特点,神经科学的发展能够有助于驱动一系列相关学科,这也是国际上对神经科学高度重视的从学术发展角度来考虑的原因。现代神经科学综合了分子生物学、细胞生物学、解剖学、组织学、发育生物学、生理学、生物化学、生物物理学、遗传学、药理学、免疫学、病理学、神经病学、精神病学、影象学、计算网络、控制论、心理学、认知科学等多门学科。推动神经科学发展可以带动多门相关学科的发展。 1.4 国际社会对神经科学很重视。美国总统和国会定九十年代为“脑的十年”,欧洲推出“欧洲脑十年”,日本有二十年“脑科学时代”等计划,都是为了推动神经科学。美国国立健康研究院1997年度投入直接与神经科学有关的经费为18亿美元,是其人类基因计划的10倍多。美国国家科学基金会总共22亿年经费中,用于神经科学的经费与其对数学、物理和化学这种大学科的研究经费在相近数量范围。日本“脑科学时代”计划年投入1000亿日元(约8亿美元),总投入2万亿日元,为其“超级钢材计划”的10倍。这些投入一方面是为人的健康,一方面也期望对脑的研究揭示新的奥秘能推动xx工业和生物技术产业,并有助于将来改进人造机器如计算机。 从国际科技界看,早在50年代,一批控制论的先驱就注重神经系统。从60年代起,一批分子生物学的开创者,包括DNA结构发现者、英国科学家克里克,纷纷转向神经科学的研究领域,使神经科学的发展有更多高质量的人员加入研究行列。神经科学的发展速度也表现在其从业人员的增长速度上。美国神经科学会于1970年成立时仅500多会员,到1998年已有2万8千以上了,这个上升趋势还未进入平台期。每年学会年会都有2万多人参加。作为比较的数字:美国数学会成立于1888年,现有会员3万;美国物理学会成立于1899年,现有会员4万。这样看,神经科学的规模已经不在数理科学的亚学科的规模,而是与大学科的规模在一个数量级了。这个比较结果,并不意味着神经科学与数学科学或物理科学在科学领域的比较,但是却反映了神经科学研究人员和梯队的发展规模和趋势。 二. 神经科学前沿简介 对于脑的好奇心,人们长久已有。对于人脑的好奇更是与对于人本身的好奇紧密相关。对神经系统的科学研究大部分是本世纪进行的。神经科学这门综合学科在过去二十多年中有显著的进展,深化了我们对神经系统的奥妙的了解,改善了对神经系统疾病的预防、诊断和xx,促进了相关学科的发展。这里,简单介绍神经科学的一些进展,使人们了解神经科学为什么是令人兴奋的一个前沿学科。 2.1 脑的高级功能 脑的高级功能是生命科学中,乃至所有科学中,最令人感兴趣的问题之一。 学习记忆这个领域,从巴甫洛夫的工作以后较长时间进展缓慢,但在最近二十年中有较多进展。先在低等动物中,后在高等动物中,神经生物学家们对学习记忆的细胞和分子生物学原理终于有了一定的了解。在七十年代和八十年代,以美国哥伦比亚大学的肯德尔为代表的科学家们,用低等动物海兔研究了一些简单行为的学习记忆过程。他们找到了这些行为所需要的神经环路,揭示了其学习记忆所依赖的细胞和亚细胞结构(特定的突触),发现了神经信息的变化,并证明了第二信使cAMP的重要性。在高等动物中,七十年代,英国的布理斯和挪威的洛默发现长期性增强作用(LTP),被认为是神经可塑性的细胞机理。其后二十多年内,LTP已在脑内多个部位观察到,并有证据显示是与一些学习记忆的行为有联系。八、九十年代,以旧金山加州大学的尼科和斯坦福大学的华裔科学家钱永佑为代表的电生理学家们推进了人们对LTP的神经生理的了解。九十年代,以麻省理工学院的日裔科学家利根川和哥伦比亚大学的肯德尔为主的科学家们,用分子生物学结合神经生物学,研究高等动物学习记忆的分子机理,发现了一些影响学习记忆的基因,也再次发现cAMP的重要性,提示低等动物和高等动物的学习记忆原理有一部分相似性。肯德尔对低等动物和高等动物学习记忆的研究贡献被普遍认为是诺贝尔奖的热门候选者。近年,一些以前人们认为在发育中起营养性作用的分子,也被发现影响LTP的出现,从而提出它们可能参与脑的可塑性过程。从分子、细胞水平到整体、行为水平,学习记忆整个领域呈现一片活跃。应该指出的是,已故的中国神经生物学家、美国科学院院士、中国科学院上海生理研究所的冯德培曾在神经可塑性领域作出重要贡献。三十年代,冯德培在当时的中国生命科学研究中心-北平协和医学院-工作时,发现强直后增强作用(PTP),这一工作实质上是{dy}个细胞水平的神经可塑性发现。近六十年后,冯德培到肯德尔处访问时,肯德尔让大家“向神经可塑性的先驱致敬”。九十年代,冯德培实验室又在LTP方面作出成绩。目前,中国神经科学界,包括上海脑研究所,还在继续进行学习记忆的研究。 无创性成象技术在神经科学的成功应用,使人们对脑的高级功能研究进入了前所未有的境界。生命科学上有这样一个事实:很多“生物”学的知识是从“死物”身上、或者从活的部件上所得到。虽然这样的研究方式也告诉了我们很多结果,可是我们大家都知道,脑功能的奥妙之一在于其整体和活体起的作用是与局部和死的系统有质的不同。所以神经科学家特别期待观察活体脑的机会。现代无创性成象技术终于{dy}次使这个幻想成为现实。正电子发射断层扫描(PET)是通过监测发射正电子的分子在脑内的分布,来了解脑内功能活动。这些发射正电子的分子是由人为导入,根据需要可以观察血流、也可以观察脑内神经递质等分子。以美国华盛顿大学雷克尔为代表的科学家们,将PET应用于脑功能多方面研究,使人们真的得以窥视活体脑的工作。比如,有报道:音乐家和一般人在听音乐时用的脑区是不一样的;也有发现,同一词汇,人把它作为动词想时和作为名词想时用的脑区不一样。在以前,神经科学的内行与外行一样,对这类无从着手研究的"理论性"题目都是只能进行"思辨"的,无创性成象技术才{dy}次把它们置于真正的科学基础上。功能性核磁共振(fNMR)是另一已成功应用的无创性成象技术。在脑内,fNMR主要检测有氧对无氧血红蛋白的比例,从而观察脑内局部区域血流量,而脑血流量能显示脑局部区域活动情况。它的用处与PET的重叠,但它无需使用人工的同位素,这样更是安全,虽然它能检测的分子也受限制。这些无创性成象技术都能用于疾病的诊断和早期诊断,所以为科学家和临床医生都提供了强有力的手段。 2.2 脑和神经系统的疾病 脑和神经系统的疾患是现代社会占比重越来越大的健康问题,在中国这种不断老化的人群中更是迫切希望能得到解决或控制。神经科学的综合研究,为多个脑疾患的诊断和xx提供了可能和希望。不仅如此,对神经系统疾患的研究还为其它疾病,如各种癌症,提供了一些有普遍意义的结果和教益。 老年性痴呆是以前在中国不被重视的问题。也许就是因为其常见,很多人以为老年的脑功能病理衰退是正常“老化”。现代神经科学告诉我们,老年痴呆是异常的病变。在过去科学不发达的漫长岁月里,人的寿命是不长的,这样在进化的过程中就没有把造成老年性痴呆的疾病基因筛选、淘汰掉。现在人的寿命延长后,老年性疾病也就增加得很快。九十年代的神经遗传学和分子神经生物学研究开始揭示了老年性痴呆的分子基础。以现在美国华盛顿大学的英国科学家戈娣和现在弗罗里达大学的英国科学家哈狄在九十年代初的发现为{lx1},迄今已经有四个基因被证明参与老年性痴呆的发病,其中三个中间任何一个坏了都不光造成发病,而且提早发病年龄。这三个基因是多个遗传因素的一部分,如果中国研究出现在已知的这几个基因和将来会知道的其他有关基因在中国人群的致病性突变位点,在理论上就可以进行产前诊断,以避免在老化人群中老年性痴呆发病率的不断增高。利用分子遗传学,神经科学家们也建立了用于xx筛选的老年性痴呆的动物模型。 因为美国国立健康研究院科学家的工作,在1997年也终于发现了{dy}个造成巴金森氏病的基因,现在世界神经科学界正在探索这个基因的重要性,并希望找到更多的致病基因。长期困扰人类的精神病,在过去几年中也有进展,已经有几个研究小组开始逼近精神分裂症的基因了。中风是常见的脑疾患之一,它的分子和细胞生物学机理在过去十几年被仔细研究。以华盛顿大学的韩/华裔美国科学家崔为代表的神经科学家们,发现了钙离子和谷胺酸受体在中风导致的脑细胞死亡中的作用。中风的细胞和整体动物模型的建立,为筛选xxxx提供了扎实的基础。 1997年的诺贝尔奖是发给旧金山加州大学的神经病学家普鲁辛勒。他研究的是一种神经退行性病变,他提出这种病是由蛋白质造成的传染病,病原蛋白质可以通过改变蛋白质结构,使正常蛋白质转化成致病蛋白质。他的假说,在八十年代很不为人接受,因为一方面大家公认传染病都需要含核酸的病原体,另一方面,人们难以理解蛋白质结构改变如何参与致病,所以,普鲁辛勒的假说最初多年是为人嘲笑的。过去十年中,越来越多的研究支持其假说,虽然至今仍未xx证明。如果他是对的话,对分子生物学和生物化学都带来突破,开辟新的领域。 2.3 脑发育的分子原理 脑的奥妙不仅在于它的功能,还在于:如此复杂的器官是如何形成和发育的。 高等动物脑形成的{dy}步是神经诱导,这是诺贝尔奖获得者、德国发育生物学家斯伯曼和学生早在1924年发现的。过去七十年中很多发育和神经生物学家希望找到神经诱导的分子,他们中间包括英国生化胚胎学家李约瑟,但大家的努力都没成功。李约瑟转向中国科技史研究,也许与这种努力遇到不顺有部分关系。在过去四、五年中,终于有几个美国实验室报道发现了神经诱导的基因,这些基因的产物分子可以诱导蛙的胚胎组织走上形成神经系统的道路。虽然这些结果仍有待在多种动物中进一步证明,人们普遍认为神经诱导的分子机理已开始被解决。有一些基因的产物可以造成多个头部的形成,也被认为是参与确定头与身体其它部位的关系的分子,虽然它们不是直接控制神经发育的基因。 神经发育过程有营养性因子参与。{dy}个神经营养性因子叫作“神经生长因子”,是五、六十年代在美国华盛顿大学的意大利裔女神经生物学家、诺贝尔奖获得者莱薇-蒙太琪妮发现的。她最初与华盛顿大学的德裔犹太生物学家、有神经胚胎学之父之称的汉伯格合作,以后与当时华盛顿大学的生化学家、诺贝尔奖获得者科恩合作,经过较长时间才分离纯化到神经生长因子。长期以来,神经生长因子是{wy}的一个神经营养性因子,但它只影响部分神经细胞。人们一直想找到更多的神经营养性因子。八、九十年代中,包括在生物技术公司和学术界工作的神经生物学家们多方努力,通过分子生物学方法,发现了多个神经营养性因子,它们对神经系统多个不同细胞有营养性作用。近年,有一些神经营养性因子被用于临床实验。在当前,它们被认为是xx神经退行性病变、神经损伤、和中风等多种以前束手无策的脑疾患的{zj0}希望。 三. 中国神经科学历史简介 中国科技与世界科技前沿的关系,在不同学科是颇不一样的:有些很接近,有些时近时远,有些较远。从大学科的总体而言,物理学也许是中国科学中与世界前沿接壤{zh0}的一个了。在生命科学方面,神经科学这门对脑和神经系统探索的交叉学科,是中国与世界有长期的、良好的接面的学科。这一方面因为中国一直有一些优秀的科学家取得了世界科学界公认的成果,一方面因为中国科学家在这个领域保持了与国际科学界的紧密交流。在当代世界神经科学迅速发展之际,简要回顾中国神经科学的一些史实,可以发现中国神经科学创造了中国科技史上几个历史记录,认识到中国具有继承和扩展神经科学研究的基础和传统,看到中国神经科学发展的希望。 3.1 中国生理学鼻祖林可胜 神经科学作为一门独立学科出现是近三十年的事,但它来源于神经生理、神经解剖、神经生物化学、神经药理学却是很长的历史。中国的神经科学鼻祖也是中国生理学鼻祖,他的名字是林可胜,英文是 与林可胜相近时代的另一位科学家蔡翘,也从事过神经生理的研究,虽然他还有其它生理学研究。他早期在复旦大学任教,以后领导军事医学科学院。中国早期神经药理学家陈克恢,二、三十年代在协和工作期间从中药麻黄中提取了xxx,发现了它作用于神经系统。这个工作,是中药现代研究的里程碑。xxx迄今仍在中外广为应用(如美国常用的感冒复方中就有xxx或类似物伪xxx),中药来源的化学分子这样为西药常用的记录,是以后中药研究仍未超过的。陈克恢本人以后长期在美国大药厂里莱药厂工作,曾任美国药理毒理学会理事长。 3.2 中国神经科学奠基人 林、蔡、陈以后,两位长期工作于中国科学院的冯德培和张香桐,是现代神经科学在中国的奠基人。 冯德培于复旦毕业后到协和医学院林可胜处,由林先送至美国,后转当时的神经生理中心英国读研究生。冯师从诺贝尔奖获得者希尔于1933年得博士学位,在与另两位神经生理的诺贝尔奖获得者短期工作后,他于34年回到协和医学院,在一间地下室开始了他的独立研究生涯。直到1995年去世前,冯德培的科学工作几乎全在中国进行。1936至1941年在协和期间,他的实验室发表了26篇论文,叙述他们对神经-肌肉接头处信息传递的神经生理研究的结果。他们的工作一部分支持了当时正在形成的化学传递学说、另一部分发现了钙离子对信号传递的作用,这后一部分与英国神经生理学家克茨的工作接近,以至于克茨后来说要不是冯的工作因日本侵华战争中断,他(克茨)的诺贝尔奖也许要有冯得的。诺贝尔奖获得者埃科斯当时急于等着看《中国生理学杂志》,就是要读冯德培的文章。冯德培在这一时期的另一发现是强直刺激后增xx应,这是亚细胞水平神经可塑性的一个先驱性电生理发现。40年代中,他到上海医学院任教,再到中央研究院医学研究所筹备处,和美国洛克菲勒研究所短期工作。以后长期领导中国科学院的生理生化研究所和分开后的生理研究所。冯德培本人一直在有机会时不断继续神经科学研究。60年代他的实验室研究了神经-肌肉间的营养性相互作用。80至90年代,他们重新进入神经可塑性研究领域,这次是看脑内可塑性的分子和细胞机理。他们的文章发表在1994年的美国科学院院刊上。《自然》杂志的编辑后来曾告诉我们那篇文章该在《自然》杂志的。冯德培是在中国国内的、因为在中国的科学研究成就当选为美国科学院院士的{wy}中国生命科学家。一个有趣的巧合是,与他的中国老师林可胜一样,冯德培的{zh1}一篇研究论文也是出在美国科学院院刊。 张香桐在早期家庭境况艰难的情况下,靠才智和毅力{zh1}成为{zy1}的科学家。他在北大心理系读过大学、协和医学院做过特别生,然后在中央研究院心理研究所工作一段时间。那时他就开始神经解剖研究,显出科学才能:他的关于大脑皮层的解剖研究结果发表在美国当时神经解剖{zh0}的杂志《比较神经学杂志》。四十年代初,张香桐赴美留学,师从耶鲁大学神经生理学家弗尔顿,获博士学位。他对大脑皮层研究有重要贡献。神经细胞的纤维有轴突和树突两种,轴突的传导神经冲动的功能广为人知,而树突的功能在五十年代初了解得很少。张香桐是研究大脑皮层中树突功能的先驱者。他用当时先进的记录大脑皮层表面电位的技术,开始研究树突的功能。美国冷泉港每年一次重大国际学术讨论会,每六、七年主题轮到神经科学一次。1952年的冷泉港会议上,张香桐应邀大会发言,阐述了他对树突功能的看法。1992年国际神经网络学会授予张香桐终身成就奖时,是这样评价他的这方面工作的:“他自1950年开始作的多种关于大脑皮层神经元树突电位的研究报告,形成了一种划时代的重要标志。它为树突电流在神经整合作用中起重要作用这一概念,提供了直接证据...这一{zy1}成就,为我们将来发展使用微分方程和连续时间变数的神经网络,而不再使用数字脉冲逻辑的电子计算机奠定了基础”。张香桐在美国一直做到了霍普金斯大学的付教授,当我们环顾今天在美国主要大学和科研机构华人任教比例仍然低的情况,可以想象当年华人学者在名校任教更是稀有。张香桐在50年代中期回国,即使在当时有较多留学生回国的背景下,象张香桐这样已经在海外有学术领导地位的科学家回国是不多的,在生命科学界更是少有。张香桐回国后先在生理研究所、以后在脑所工作,除了从事皮层研究外,张香桐以后还研究了针刺镇痛的神经生理原理,为这个领域带来了严格的科学标准,取得了重要发现。 林可胜、冯德培、张香桐在中国和世界科学界中往来自如。林可胜离开中国后在美国也是到很好的机构领导科学研究。冯德培在八十年代再被邀请访美时,在加州大学和哥伦比亚大学都是作讲席教授。张香桐以前在美任教,八十年代再被美国国立健康研究院邀请时,又是得特别荣誉研究席位。林可胜、冯德培师徒相隔数十年后都成为了美国科学院院士。1989年美国出版的《神经科学百科全书》将张香桐列为“公元前300年至公元1950年间对神经科学进展有贡献的人物”。他们与国际优秀的科学家建立了良好的友谊和交往,他们使得很多好的神经科学家到中国交流科学,也将中国的神经科学的后继人送到国际上好的实验室训练。他们也都将自己与国际交往的关系传给一代代科学的后继人,使中国神经科学与世界的交往一直维持在较好的水平。 3.2 中国神经科学后继发展 象林可胜、冯德培、张香桐这样的有杰出科学工作的科学家,在中国其它学科是有的,但是很少。师徒双双成为美国科学院院士的更只有林、冯一对。在中国生命科学界,林可胜、冯德培、张香桐这些神经科学家在他们同辈中更是突出。应该指出,在中国的科技、教育界和公众中,比他们知名度大的科学工作者并不少。而事实上,中国生命科学界的同辈中,没有任何人在科学上超过他们三人。这正表明中国神经科学界是一个“雷声小、雨点大”、有扎实科学成就、而不善公众联络的群体。在前辈中国科学家的科学传统和直接、间接教育下,神经科学在中国形成了一支少而精的队伍。 神经生理也就是冯德培创立的中国科学院上海生理研究所所的一个主功方向。生理所培养了一批神经生物学家,包括视觉生理学家杨雄里、刘育民、江振裕、梅镇彤、徐科、范世藩、李朝议等。 在60、70年代的特定历史条件下,张香桐带动针刺镇痛的科学研究,为中国神经科学队伍的培训、发展、保存,起了很大的作用。当各种对针刺xx不严格的“研究”化为历史灰烬后,一支参与过针刺镇痛的科学研究的神经科学梯队却因为有严格的训练而保存下来了,成为中国神经科学发展的重要基础。在张香桐促使下,1980年中国建立了{dy}个神经科学的专门机构:中国科学院上海脑研究所。它的设立,要略早于国际上后来风行的专门神经科学研究机构和系科的大量设立。这个科学史上少有的中国超前国际的记录,也从一方面说明了中国神经科学界的目光。张香桐在培养神经科学人才上,为中国作出了很大的贡献。在60年代那么特殊的、不是最适宜于基础科学发展的环境下,他竟然促成当时的学生(现任脑所所长)吴建屏留学英国。张香桐自任美国《脑研究》杂志多年编委,以后也交给吴建屏。在张香桐的培养下,脑所出了一批神经科学家,他们的工作和与世界的交往,使上海脑所这样一个规模迄今仍然较小的研究机构在国际神经科学界令人注目。张香桐与上海{dy}医学院的神经药理学家张昌绍还培养了中国科学院上海xx所的邹冈。邹冈在50年代末、60年代初发现了xx镇痛的脑内作用部位,是当时中国科学少有的较大{lx1}于世界的一个工作。张香桐和冯德培在五十年代末主办的神经生理讲学班,培训了全国一批神经生物学家。 除以上提到的机构外,神经科学研究还进行于北京医科大学、上海医科大学、中国医学科学院、上海第二军医大学、第四军医大学、军事医学科学院等多个医学院所,中国科技大学、复旦大学、北京大学等综合大学,中国科学院内除脑所、生理所外,生物物理所、xx所、生化所、细胞所、心理所、自动化所都有神经科学有关的研究。一些非生命科学家,如核物理学家唐孝威,也加入了神经科学的研究领域,推动无创性影象技术在神经科学的应用。有不同学科背景的科学工作者组成的中国神经科学会于1995年成立。这些也许都预示着中国的神经科学,会象国际发展趋势一样,有不断增加的学科交叉和综合。 中国神经科学的历史回顾显示,中国神经科学家是可以取得令国际科学界公认的成就的。应该看到,中国神经科学的规模还很小,特别是与当代国际神经科学发展相比。 结语 神经科学是一个包含较广,综合性强的学科,它的进展也是多方面的,不可能在此都介绍到。但是,从以上简介,我们可以看到,神经科学在分子、细胞到整体各个层次有全面的推进。这种推进,对基础科学和临床应用都带来了实质的利益。从上面这些前沿介绍,大家也可以看到,神经科学还不能回答一般大众可以提出的对脑功能的好些问题,也还有好些脑疾患不能有效xx。这些不足,正好说明神经科学是一个有广阔前景的学科。 从三个方面:神经系统的重要性、学科已有的在当代迅速发展势头、和学科未来深远的前景,都显示同样一个信息:神经科学是科学前沿有前途的学科。在这样的背景下,应该方便理解为什么神经科学在国际上造成了许多兴奋、得到国际科技界的重视、和一般人群的支持,也容易令人想到中国神经科学研究发展规模需要跟上世界发展趋势。 本文1998年曾用于蒲慕明、吴建屏、鲁白、梅林、饶毅关于成立中国科学院神经科学研究所提议的一部分。 1999年发表于《二十一世纪》4月号,101-108页 |