第八届“希望杯”全国数学邀请赛六年级第1试 以下每题6分,共120分。 1.计算:= 。 2.将分子相同的三个最简假分数化成带分数后,分别是:,其中a, b, c是不超过10的自然数,则( 3.若用“*”表示一种运算,且满足如下关系:(1)1*1=1; (2)(n+1)*1=3×(n*1)。则5*1-2*1= 。 4.一个分数,分子减1后等于2/3,分子减2后等于1/2,则这个分数是 。 5.将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是 。 □□□□-□□□□
6.一个箱子里有若干个小球。王老师{dy}次从中箱子取出半数的球,再放进去1个球,第二次仍从箱子中取出半数的球,再放进去1个球,…,如此下去,一共操作了2010次,{zh1}箱子里还有两个球。则未取出球之前,箱子里有小球 个。 7.过年了,同学们要亲手做一些工艺品送给敬老院的老人。开始时艺术小组的同学们先做{yt},随后增加15位同学和他们一起又做了两天,恰好完成。假设每位同学的工作效率相同,且一位同学单独完成需要60天。那么艺术小组的同学有 位。 8.某超市平均每小时有60人排队付款,每一个收银台每小时能应付80人,某天某时段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队了。如果当时有两个收银台工作,那么付款开始 小时就没有人排队了。 9.下面四个图形都是由六个相同的正方形组成,其中,折叠后不能围成正方体的是 。(填序号)
10.如图1所示的四个正方形的边长都是1,图中的阴影部分的面积依次用S1,S2,S3,S4表示,则S1,S2,S3,S4从小到大排列依次是 。
11.如图2,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根铁棒在水面以上的长度是总长的1/3,另一根铁棒在水面以上的长度是总长的1/5。已知两根铁棒的长度之和是33厘米,则两根铁棒的长度之差是 厘米。
12.甲、乙、丙三人一起去钓鱼。他们将钓得的鱼放在一个鱼篓中,就在原地躺下休息,结果都睡着了。甲先醒来,他将鱼篓中的鱼平均分成3份,发现还多一条,就将多的这条鱼扔回河中,拿着其中的一份回家了。乙随后醒来,他将鱼篓中现有的鱼平均分成3份,发现还多一条,也将多的这条鱼扔回河中,拿着其中的一份回家了。丙{zh1}醒来,他也将鱼篓中的鱼平均分成3份,这时也多一条鱼。这三个人至少钓到 条鱼。 13.过冬了,小白兔只储存了180只胡萝卜,小灰兔只储存了120棵大白菜。为了冬天里有胡萝卜吃,小灰兔用十几棵大白菜换了小白兔的一些胡萝卜,这时他们储存的食物数量相等。则一棵大白菜可以换 只胡萝卜。 14.王宇玩射击气球的游戏,游戏有两关,两关的气球数量相同。若王宇{dy}关射中的气球数比没射中的气球数的4倍多2个;第二关射中的气球数比{dy}关增加了8个,正好是没射中的气球数的6倍,则游戏中每一关有气球 个。 15.已知小明的爸爸和妈妈的年龄不同,且相差不超过10岁。如果去年、今年和明年,爸爸和妈妈的年龄都是小明年龄的整数倍,那么小明今年 岁。 16.观察图3所示的减法算式发现,得数175和被减数571的数字顺序相反。那么,减去396后,使得数与被减数的数字顺序相反的三位被减数共有 个。
17.甲、乙两个服装厂生产同一种服装,甲厂每月生产服装2700套,生产上衣和裤子的时间比是2:1;乙厂每月生产服装3600套,生产上衣和被子的时间比是3:2。若两个厂合作一个月,最多可生产服装 套。 18.一收银员下班前查账时发现:现金比账面记录少了153元。她知道实际收钱不会错,只能是记账时有一个数点错了小数点。那么记错的那笔账实际收到的现金是 元。 19.现有5吨的A零件4个,4吨的B零件6个,3吨的C零件11个,1吨的D零件7个。如果要将所有零件一次运走,至少需要载重为6吨的汽车 辆。 20.甲、乙两人分别从A、B两地同时出发,相向而行。出发时他们的速度之比是3:2,相遇后,甲的速度提高20%,乙的速度提高1/3,这样当甲到达B地时,乙离A地还有41千米,那么A、B两地相距 千米。
|