模具的表面处理技术

模具的表面处理技术

  在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果,这也正是表面处理技术得到迅速发展的原因。

    的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。虽然旨在提高表面性能新的处理技术不断涌现,但在制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。

    渗氮工艺有气体渗氮、离子渗氮、液体渗氮等方式,每一种渗氮方式中,都有若干种渗氮技术,可以适应不同钢种不同工件的要求。由于渗氮技术可形成优良性能的表面,并且渗氮工艺与的淬火工艺有良好的协调性,同时渗氮温度低,渗氮后不需激烈冷却,模具的变形极小,因此的表面强化是采用渗氮技术较早,也是应用最广泛的。

   渗碳的目的,主要是为了提高的整体强韧性,即的工作表面具有高的强度和耐磨性,由此引入的技术思路是,用较低级的材料,即通过渗碳淬火来代替较高级别的材料,从而降低制造成本。

    硬化膜沉积技术目前较成熟的是CVD、PVD。为了增加膜层工件表面的结合强度,现在发展了多种增强型CVD、PVD技术。硬化膜沉积技术最早在工具(刀具、刃具、量具等)上应用,效果{jj0},多种刀具已将涂覆硬化膜作为标准工艺。自上个世纪80年xx始采用涂覆硬化膜技术。目前的技术条件下,硬化膜沉积技术(主要是设备)的成本较高,仍然只在一些精密、长寿命模具上应用,如果采用建立热处理中心的方式,则涂覆硬化膜的成本会大大降低,更多的如果采用这一技术,可以整体提高我国的模具制造水平。

    材料的预硬化技术

    在制造过程中进行热处理是绝大多数长时间沿用的一种工艺,自上个世纪70年xx始,国际上就提出预硬化的想法,但由于加工机床刚度和切削刀具的制约,预硬化的硬度无法达到模具的使用硬度,所以预硬化技术的研发投入不大。随着加工机床和切削刀具性能的提高,材料的预硬化技术开发速度加快,到上个世纪80年代,国际上工业发达国家在塑料模用材上使用预硬化模块的比例已达到30%(目前在60%以上)。我国在上世纪90年代中后期开始采用预硬化模块(主要用国外进口产品)。

    模具材料的预硬化技术主要在模具材料生产厂家开发和实施。通过调整钢的化学成分和配备相应的热处理设备,可以大批量生产质量稳定的预硬化模块。我国在模具材料的预硬化技术方面,起步晚,规模小,目前还不能满足国内模具制造的要求。

    采用预硬化模具材料,可以简化模具制造工艺,缩短模具的制造周期,提高模具的制造精度。可以预见,随着加工技术的进步,预硬化模具材料会用于更多的模具类型。

 



附:

塑料模的表面处理

   为了提高塑料模表面耐磨性和耐蚀性,常对其进行适当的表面处理。

 

    1.塑料模镀铬是一种应用最多的表面处理方法,镀铬层在大气中具有强烈的钝化能力,能长久保持金属光泽,在多种酸性介质中均不发生化学反应。镀层硬度达1000HV,因而具有优良的耐磨性。镀铬层还具有较高的耐热性,在空气中加热到500℃时其外观和硬度仍无明显变化。

    2.渗氮具有处理温度低(一般为550~570℃),模具变形甚微和渗层硬度高(可达1000~1200HV)等优点,因而也非常适合塑料模的表面处理。含有铬、钼、铝、钒和钛等合金元素的钢种比碳钢有更好的渗氮性能,用作塑料模时进行渗氮处理可大大提高耐磨性。

适于塑料模的表面处理方法还有:氮碳共渗、化学镀镍、离子镀氮化钛、碳化钛或碳氮化钛,PVD、CVD法沉积硬质膜或超硬膜等。

塑料模具的制造工艺路线

塑料模具的制造工艺路线

    1.低碳钢及低碳合金钢制模具

   例如,20,20Cr,20CrMnTi等钢的工艺路线为:下料→锻造模坯→退火→机械粗加工→冷挤压成形→再结晶退火→机械精加工→渗碳→淬火、回火→研磨抛光→装配。

    2.高合金渗碳钢制模具

   例如12CrNi3A,12CrNi4A钢的工艺路线为:下料→锻造模坯→正火并高温回火→机械粗加工→高温回火→精加工→渗碳→淬火、回火→研磨抛光→装配。

    3.调质钢制模具

   例如,45,40Cr等钢的工艺路线为:下料→锻造模坯→退火→机械粗加工→调质→机械精加工→修整、抛光→装配。

    4.碳素工具钢及合金工具钢制模具

   例如T7A~T10A,CrWMn,9SiCr等钢的工艺路线为:下料→锻成模坯→球化退火→机械粗加工→去应力退火→机械半精加工→机械精加工→淬火、回火→研磨抛光→装配。

    5.预硬钢制模具

v例如5NiSiCa,3Cr2Mo(P20)等钢。对于直接使用棒料加工的,因供货状态已进行了预硬化处理,可直接加工成形后抛光、装配。对于要改锻成坯料后再加工成形的,其工艺路线为:下料→改锻→球化退火→刨或铣六面→预硬处理(34~42HRC)→机械粗加工→去应力退火→机械精加工→抛光→装配。

 

金属注射成形模具的材料选择

 

注射模具可以简单地划分为模架和腔体两部分。

  注射模具模架与塑料注射模具模架xx相同,模架材料可以参考塑料注射模具模架来选择:一般,动模板、定模仮、推板可采用45钢,调质处理硬度180~250HBS。其它板料可以采用45钢或Q235钢。对于精度要求特别高的模架,所有板料均可采用45钢调质处理,甚至用Cr12类的微变形模具钢,淬火处理。导柱、导套可采用T8A淬硬到50~55HRC或20钢渗碳0.5~0.8mm厚,淬硬到56~60HRC。

  注射模具工作时,一般承受20~50MPa的交变负荷,同时伴有冷热温度的交替。在超精密注射成形中,使用的成形压力甚至会超过正常使用压力的几倍。注射模具的使用寿命一般为几万甚至几十万次,因此模具应有足够的强度与刚度。

  金属注射模具模腔一般采用硬 充为58~62HRC的淬硬模具制作,因此必须注意由尖角、沟槽国、切口及加工缺陷所引起的应力集中。这些缺陷会大大降低模具的疲劳强度。

  对于腔体部分,材料选择主要考虑耐磨性、淬火形状稳定性、耐蚀性及加工性能。由于金属注射料对模具的冲刷磨损比一般塑料严重得多,耐磨性是用于批量生产的金属注射模具腔体的最基本要求,一般要求腔体的硬度在58~62HRC。工具钢由于具有综合的强度、硬度、韧性、淬透性、耐蚀性及加工性能、是腔体的{sx}材料。常用材料有合金模具钢如Cr12、Cr12MoV、Cr12MoV、Cr2Mn2SiWMoV、Cr6WV及高速钢W18CrV、W6Mo5Cr4V2等。注射模具一般形状较为复杂,常 采用超精密电火花,线切割等电加工手段,要求材料组织均匀、淬透性及淬火形状稳定性高。金属注射料在注射温度下,常产生腐蚀性气体,帮耐 蚀性也是对模具材料的一顶要求。   

  在特殊情况下,如试样和小批量零件的快带制作,为了简化工艺,Q235钢、45钢。铝合金、锌镍合金等,也常用来制作某些腔体。这会大大缩短样品的开发周期。但这样的模具一般不能用于批量生产。  

  总之,模具选择必须根据产品的批量,零件的形状、精度,采用的加工手段及工艺,具备的热处理的难易程度,以及材料来源的方便必等来综合考虑。 

  金属注射模具一般用于小型零件的生产,模具尺寸很小。正常使用情况下,只要模板的使用面积不超过长度和宽度的60%,深度偿超过10%时,可以不进行强度计算。况且,模具形状一役比较复杂,型腔内的实际受力情况也很复杂,即使作出多种假设,也很难用弹性力学及有限元的方法得出结果。因此模具设计常采用放大安全系数的宽容方法。(kjfc;
UM{
 

  但对于较大制品或采用超高压精密成形工艺时,如有可能,还是应对型腔的强度进行计算。防止由于强度不足,变形过大产生溢料甚至破坏。较为简单形状模腔的强度计算,可以参考有关塑料模具设计注射模具的设计手册。复杂型腔可以采用有限元或专业软件来分析计算。 

为保证制品精度,模具设计应注意以下几点:

  1)合理设计模具的放大系数。在保证顺利成形的前提下,尽量减少粘结剂的加入量。

  2)合理的模具结构。精密的尺寸部件应有一定硬度,并且要更换方便;采用的公差合理,成形坯’孔’尽量采用公差上限,成形坯’轴’尽量采用公差下限;零件的工艺结构合理,保证加工精度。   

  3)合理选择浇口的形式和位置。   

  4)合理选择顶出方式,尽量使顶出均匀平稳,减少变形。

  5)模具应设有温度调节系统,尽量保证均匀填充和冷却,减少密度不均匀性。

  6)合理选择型腔数量和布局,尽量采用均匀对称布局,保证平衡填充。特别精密的制品,应尽量减少型腔数目。  7)合理间隙,避免产生飞边、毛刺。

郑重声明:资讯 【模具的表面处理技术】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——