比例阀电磁铁线圈工作原理_XiaoQ's Sky
图片:
图片:

电磁力的方向取决于电磁铁道结构
上图就是常规定电磁铁电磁铁道工作气隙在动铁道上部,通电后电磁力向上(正比例溢流阀);
下图为反比例电磁铁电磁铁工作气隙在动铁道下部,通电后电磁力向下(反比例溢流阀)。
当然,实现反比例用反比例电磁铁仅仅是途径之一。

说的简单一点就是普通的电磁铁的吸力是两端强,比例阀的电磁铁改过的,做的其中一端吸力很强,另外一端弱,推杆中间是个圆柱的!所以一通电就被吸到强的那一端了,所以推杆运动方向和电没关系,电会影响电磁力的大小!

描述:双向电磁铁
图片:


描述:双向旋转电磁铁
图片:

我对楼上朋友的想法,没有xx搞清楚,希望能进一步表达清楚。主要是感到楼上朋友的想法很特别,没有什么框框,说不准有什么新道道。
至于楼主的问题,我在1楼给出插图后,写得太简单一点,现补充一下,看看与楼上朋友的想法能否对的上。
1)楼主的问题是“为什么比例阀的电磁铁线圈通电总是使衔铁向一个方向运动,而不会向相反方向运动呢?”
现在想来,实际上这里有两种可能性。
2){dy},就像我在1楼用两张插图表示的那样,电磁铁可以向离开线圈腹部方向运动(一般感到的情况,开关电磁铁也是这样,所谓正比例),也可以向进入线圈腹部方向运动(一般看不到,所谓反比例)。这里,关键是工作气隙位置的布置,因为通电后磁力线总是去图缩小磁路上的总磁阻,也就是将气隙降低到最小。不管动铁是向那个方向动,都是磁路减小气隙造成的。
3)第二,受到楼上朋友的启发,实际上楼主的问题,是不是还有第二层的意思,就是同一个电磁铁,能不能要它往左就往左,要它往右就往右。也就是楼上朋友讲的,“做的其中一端吸力很强,另外一端弱,推杆中间是个圆柱的!所以一通电就被吸到强的那一端了”实际上确有类似的电磁铁,只不过是两头“强”,即两头都有一个“气隙”(在循环的磁路总有意留出来空气间隙)。这种电磁铁叫做“双向比例电磁铁”,在动铁两头各配置一个气隙,两组控制线圈分别管理一个气隙,甲线圈通电,电磁铁动铁左移;乙想线圈通电,电磁铁动铁就右移。
4)顺便讲到,既然有直线运动电磁铁,就一定会有旋转电磁铁

描述:BOSCH单级伺服比例阀
图片:

lxy9332先生,请注意,原BOSCH的比例阀与伺服比例阀中,凡是只带1个电磁铁的,应该是带位移传感器的那种。它们一般是常规的三位,外加一位安全位。这可见原BOSCH公司1997年出版的“电液比例技术与电液闭环比例技术的理论与应用”第29页(比例方向阀)和第83、84页(闭环比例阀,即伺服比例阀)。可以理解为通上电流后,阀处于中位,其左位与右位的沟通受命于控制电流,电磁力与弹簧力的平衡确定阀口的轴向开度,此开度由阀内位置闭环保证。失电时处于第4位-安全位。

图片:


图片:

1)普通电磁铁与比例电磁铁在个别地方有差别之外,现今两者很相像。可以参见两张附图,{dy}张图的左边是比例电磁铁道典型结构,右边是普通电磁铁与比例电磁铁吸力特性(位移-力特性,注意:对照左右图,就能明白气隙与位移的关系,即动铁只能在气隙范围内移动)。左图表明,普通电磁铁的特性是随着气隙的减小,电磁铁的吸力逐步增大。而比例电磁铁在工作区内吸力与气隙大小无关(只与输入电信号成正比)。右图中靠右边的区域3(罗马字),是一个用于退让的非工作区(例如带2个比例电磁铁的比例方向阀,当一端的电磁铁给电信号阀芯向另一端移动时,另一端的电磁铁动铁必须往后退出相等的距离,否则就打架了)。第二张图左边说明,比例电磁铁有一个涂成黑色的隔磁环,使得电磁铁气隙中的磁力线,除了像传统电磁铁那样勇往直前(产生右边图所表示的FM1电磁力,特性与传统相同)外,还有一部分磁力线弯向隔磁环左边,形成右边图上表示的FM2电磁力(吸力特性正好与传统相反,即气隙越小吸力越小),两者的叠加形成了比例电磁铁的水平吸力特性。
2)普通电磁铁有干式与湿式(电磁铁内腔充满油液)之分,现在多用湿式。比例电磁铁一般多数为湿式。湿式电磁铁道气隙中也充满油液,但总不是导磁体而磁阻比较大,所以,还是叫气隙。
3)在湿式比例电磁铁中,根据所能承受的油压倒高低,区分为基本只能承受几bar回油背压的低压,和能承受350bar的高压,使用时千万注意区分。
4)普通电磁铁电源区分交流与直流,还曾经有过阀体上(xx板下面)带有建交流整流为直流的形式,现在多常用直流,安全性好。交流电磁铁通电时如果不能xx吸合(气隙等于零),就很容易烧坏。
5)比例电磁铁多用直流,不过电压上区分常规的24V与车辆用的12V。

描述:电液比例控制系统技术构成
图片:


描述:比例控制放大器的典型构成
图片:


这里传上2张插图,可控大家了解闭环控制的一点基本情况。其中图1-5表示了电液控制系统的技术构成。我们可以看到很多反馈通路,有不同范围的局部反馈,也有控制对象到输入信号的大闭环反馈。
1)左上角有一个从电-机械转换器(电磁铁)到“指令及放大部件”的电反馈,就是BOSCH带电反馈比例电磁铁的伺服比例阀阀芯位置(电磁铁动铁)的反馈。这个闭环范围很小,为内部小闭环。
2)图中从右往左倒数过来的第二个方框为“液压执行器件”,例如液压缸。液压缸杆位置电反馈就是从这个方框后引出,经过下方的“检测及反馈器件”(例如液压缸杆的位移传感器),反馈到“指令及放大部件”。如果参见图4-1,执行元件(液压缸)的反馈的细部位置,就更明显。
3)伺服比例阀的位置,就在左右上下都是中间的“液压转换及放器件大”;
4)大家关心的PLC在图上没有画出来,实际上就在“指令及放大部件”之前,进行控制信号的编程控制。如果参见图4-1,则PLC就在“外输入”与“输入接口”这个区段(PLC正在迅速发展,不同品牌的PLC功能有所差别,据比较熟悉的年轻人讲,有的专用PLC甚至可以代替电子放大器)。
5)综上,从控制信号开始的前向(从左往右)流程可以整理为(参见图1-1与图4-1):
PLC-放大器(输入接口-信号处理-(液压缸反馈信号)-。。。。功率放大)-电磁铁-伺服比例阀液压部分-液压缸(输出位置反馈)-控制对象

单向比例电磁铁的工作原理:
图可见楼上7楼的图,当给比例电磁铁控制线圈一定电流时,在线圈电流控制磁势作用下,形成两条磁路,一条磁路¢1由前端盖盆形极靴底部,沿轴向工作气隙,进入衔铁,穿过导套后段,沿导磁外壳回到前端盖极靴.而另一磁路¢2沿盆形极靴锥形周边(导套前段),沿径向穿过工作气隙进入衔铁,再与¢1汇合.由于电磁作用,磁通¢1产生了通常的端面力FM1,磁通¢2则产生了一定数量的附加轴向力FM2,两个力合成,就得到了整个比例电磁铁的输出力FM.在工作区域内,电磁输出力FM保持恒定,与位移无关.从5-1图中可见,在工作气隙接近零的区段,输出力急剧上升(吸合区Ⅰ),在这一行程区段内不能正常工作,因此在结构上用加限位片的方法将其排除.

3 2009-10-11 16:09 |
        我急需购买24V,行程15MM,吸力8~12N的单向电磁吸铁,另铁芯要求直径不小于20MM,并要求通电时铁芯应向外伸出。请速和我联系。手机:13862688985.
                                                    谢谢!

郑重声明:资讯 【比例阀电磁铁线圈工作原理_XiaoQ's Sky】由 发布,版权归原作者及其所在单位,其原创性以及文中陈述文字和内容未经(企业库qiyeku.com)证实,请读者仅作参考,并请自行核实相关内容。若本文有侵犯到您的版权, 请你提供相关证明及申请并与我们联系(qiyeku # qq.com)或【在线投诉】,我们审核后将会尽快处理。
—— 相关资讯 ——